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Adsorption performance of 5A molecular sieve zeolite in water
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A B S T R A C T

In this work GERG2008 EoS was incorporated in a volumetric-gravimetric-chromatographic technique.
The system utilized to measure in-mixtures components experimental selective isotherms individually,
with the ability to analyze water vapor–gas components in the same mixture. 5A zeolite was used as a
solid adsorbent for binary and ternary CO2/CH4/H2O mixtures adsorption at 50 �C and 70 �C temperature
up to 10 bar pressure. Artificial neural network (ANN) modeling was applied to predict ternary and binary
gaseous with the presence of water mixtures. This study delivered better clarification in the field of
selectivity and reliability in the term of multicomponent and dual phase mixtures analysis.
© 2018 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights

reserved.
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Introduction

Carbon dioxide (CO2) emissions and environmental issues
nowadays raise the demands for sophisticated and higher
efficiency separation process. More effective separation techniques
which related to additional energy consumption need to be
investigated and studied, especially in term of highly selective
materials innovation. Natural gas and flue gas deliberating the
pioneer sources of CO2 emission [1,2]. Besides, the selectivity of
multicomponent mixtures separation studies plays a huge impact
on the purification and refining process [3–5].

A typical natural gas composed of a high percentage of methane
(CH4), 75%–90%, along with significant amount of other hydro-
carbons such as ethane, some propane, butane, and 1%–3% of other
higher hydrocarbons [6]. However, according to Darman and
Harun [7], the composition of natural gas reserves yields another
trend in some Asian Pacific regions, as the CO2 content in some
fields ranges from 30 to 90% at high CO2 content reserve region. For
the intention for natural gas purification [8–11], a variety of
selective separation techniques have been considered, and other
multi components streams persisted practically, focusing on
modeling and theoretical selectivity analysis [12–15]. Adsorption
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with solid desiccants is as one of the suitable techniques for multi-
component mixtures separation and purification processing
[16,17]. As such, this work focuses on adsorption-based separation,
as it is illustrated more easiness of handling as opposed to liquid
solvents and more eco-friendly [18–20].

Several researches were performed for studying binary, ternary,
and higher components mixtures selectivity analysis [21–23] on
diverse sorts of solid desiccants [24–28] and operating conditions.
On theoretical prediction study, most studies focused on the
theoretical prediction of selectivity from the results obtained by
the pure component adsorption [29]. Henry’s law constant,
Langmuir model constant for selectivity identification, Ideal
Adsorption Solution Theory (IAST) and Real Adsorption Solution
Theory (RAST) model [30,31] are some cases of theoretical models
utilized for mixture predictions from pure components adsorption
data. However, artificial neural network (ANN) concerned excessive
attraction and deliberated as a consistent technique compared to
other known theoretical models. ANN utilized for the prediction of
density, surface tension, and viscosity of components and various
mixtures [32–34]. Back-propagation artificial neural network (BP-
ANN) model was successfully applied for the simultaneous
estimation of vapor–liquid equilibrium (VLE) of four binary systems
[35]. While, Fotoohi et al. [36] investigated the capability to predict
binary mixtures from aforementioned reported data in the
literatures utilizing (2-D EoS) i.e. Redlich–Kwong (RK), Soave–
Redlich–Kwong (SRK), Peng–Robinson (PR), and Modified
hed by Elsevier B.V. All rights reserved.
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Mohsennia–Modarress–Mansoori (M4), compared with the data
predicted utilizing ANN predictions. However, they claimed that the
binary mixtures predicted utilizing ANN model showed better
agreement and precision compared to the EoSs mentioned and
studied [37,38]. Thus far, there are very few reports in the literature
with experimental data regarding multi-component mixtures
selective adsorption isotherms representing individual components
uptake independently, especially if the mixtures reflecting more
than one phase i.e. gases and water vapors.

The ratio of SiO2/AlO2 has high impact in the multicomponent
mixtures selective separation, which related to the water vapor–
solid interaction on ionic solid adsorbents. This might affect the
hydrophobicity of the solid adsorbents and in conclusion,
negatively affect the adsorption capacity and selectivity. Rana
et al. [39] reported that the adhesion forces are an exponential
function of macro scale water contact and surface energy due to
strong liquid–solid or vapor–solid interaction elaborated in
capillary forces. These interactions are subjected to electrostat-
ic-dipole–dipole interaction (hydrogen bonding) on the surface
and/or few atomic water layers above the surface. Meanwhile,
Kumar and Chowdhury [40] reported that the relatively high
selectivity for nitriles on H-USY type zeolites with a high SiO2/
Al2O3 ratio might be related to their hydrophobicity, as the
hydrophobic H-USY samples could not retain sufficient H2O.

Zeolite has been reported as a significant material in the
application of catalysis, absorption, and ion-exchanging due to
their microporous structure [41]. The most commonly used zeolite
is Faujasite (FAU) type adsorbents whereby the framework is
composed of AlO4 and SiO4 tetrahedron. It can also be viewed as
SiO2 with some SiO4 tetrahedron substituted by AlO4, resulting in
electronegativity of the framework. It can be balanced by the
cations attaching to the framework in the pores, such as Na+, K+,
Mg2+, Ca2+, NH4+, etc. These cations are always easy to be
exchanged with external ions. The number and sites of the cations
strongly affect the properties of the zeolites.

In this study, 5A molecular sieve zeolite (MSZ) is used as the
solid adsorbent since it has high adsorption capacity for pure CO2

and water (H2O) compared to silica gel. Although adsorption of gas
Fig. 1. Schematic diagram of the volumet
using 5A MSZ had been studied, previous works by other
researchers studied the premixed multi-component mixtures
effect by variation of compositions on the total mixture uptake,
without further studying the individual uptake of components
independently within the mixture.

In this work, a novel setup compared to previously existed
techniques [42–44], with the high throughput mathematical
approach and EOSs implemented will be presented. CO2, CH4,

and water vapor combination, as in binary and ternary mixtures
were studied for their individual selective isotherms at various
predetermined compositions and initial loadings.

This new measurement technique will give the opportunity to
compare the pure adsorption of CO2 and its isotherm modeling
with selective CO2 adsorption within the binary mixture of CO2:
CH4 in the presence of water vapor. This state of art method
contributed a better understanding of the behavior of CO2 within
the binary/ternary mixture, especially with various compositions.
In addition, it gives the opportunities to study the manipulations of
individual components of the loading compositions and its impact
on the total mixture uptake in vapor–gas combinations.

Materials and methods

Materials

5A zeolites molecular sieve beads (Sigma Aldrich, Germany) with
the linear formula: 0.80 CaO: 0.20 Na2O: 1 Al2O3: 2.0 � 0.1 SiO2: x
H2O was utilized as solid adsorbents in this study. Its physical
characteristics consisted of BETsurface area �538.47 m2g�1, pore dm
�2.101 nm and pore volume �0.303 cm3g�1. Helium (He) (99.999%),
CO2 (99.995%) and CH4 (99.995%) were purchased from Linde Sdn.
Bhd., Malaysia. Distilled water was used for water vapor generation.

Experimental setup

The adsorption measurements were performed in the custom
designed volume-gravimetric system from Rubotherm GmbH.,
Germany. Fig. 1 demonstrates the main parts and sections of the
ric-gravimetric experimental system.
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experimental setup. The dosing system is responsible for gases and
vapor dosing to the mixing chamber, while the mixing chamber/
unit (MC) is responsible for mixing the adsorbates and created a
homogeneous mixture before expanded to the reaction chamber/
cell (RC). The RC consisted of magnetic suspension balance (MSB)
and it was connected to the custom-made Danni-Master Gas
Chromatograph (GC). The custom-made Dani Master GC was
controlled by the Clarity software and equipped with a thermal
conductivity detector (TCD), Split/Split-less injector, and custom
made (HayeSepQ, 3 m, 1 mm, 1/16”, 80/100 mesh PC11518) column.
The GC was utilized to determine the actual composition of the
gas/vapor binary and ternary combinations before and after
adsorption process. The high accuracy MSB was used to measure
the change in mass and density of the sample of material and gases,
respectively. The GC was equipped with a thermal conductivity
detector (TCD), Split/Split-less injector, and custom made (Hay-
eSepQ, 3 m, 1 mm, 1/16”, 80/100 mesh PC11518) column to identify
the actual composition of the mixture in the mixing unit before
expansion to the reaction chamber. Multipoint gases and vapors GC
calibrations were performed whenever a new combination of
gases was utilized.

Blank and buoyancy calibrations

In the blank measurement, inert gas i.e.: He was utilized to
measure the sample basket weight and volume of empty sample
cell (without sample) at the same operating temperature and
pressure. Fig. 2 shows the forces were exerted during blank
measurements and properties measured by balance, represented
by Dm as corrected mass Eqs. (1)–(4). The force, FB is the buoyancy
force upward and FA is the adsorption force or the gravimetric force
according to the adsorbed mass of solute (gas). Vsc is the volume of
the sample basket and msc is the mass of the sample basket.

FB ¼ Vsc:r P; T; yð Þ:g ð1Þ

FA ¼ msc:g ð2Þ

FEXP: ¼ FA � FB ¼ g: msc � Vsc:r P; T; yð Þ� � ð3Þ

Dm ¼ FEXP:
g

¼ msc � Vsc:r P; T; yð Þ� � ð4Þ

Blank measurement usually consisted around 6–8 segments
with the first segment carried out under a vacuum condition to
identify the density of gas equivalent to zero (r = 0). The sample cell
weight equivalent to the mass acquired by the balance reading at
the zero-point pressure. The volume of the sample basket reduced
Fig. 2. Forces exerted on the sample basket cell during adsorption measurements
and balance reading.
to zero at vacuum condition as indicated by Eqs. (4) and (5):

Dm ¼ msc ð5Þ
The blank measurement was conducted to determine the initial

adsorbent holder/basket mass and volume prior adsorption, as
these values were essential in further calculations and balance
tarring in case a balance drifting occur during measurements [45].

Buoyancy measurements

For a precise pressurized gravimetric measurement, the
correction of buoyancy force was incorporated. Eqs. (6)–(8)
demonstrated the forces exerted on the sample during buoyancy
effect and the parameters which were taken into consideration
[46,47].

FB ¼ Vsc þ Vs� �
:r P; T; yð Þ:g ð6Þ

FA ¼ msc þ msð Þ:g ð7Þ

FEXP: ¼ FA � FB ¼ g: msc þ ms � Vsc þ Vs� �
:r P; T; yð Þ� � ð8Þ

where FA, FB, and FEXP are adsorption gravimetric force, buoyancy
force and balance reading force, respectively. Eqs. (9) and (10) were
used for calculation of sample mass and sample volume during
buoyancy measurement.

Dm ¼ FEXP:
g

¼ msc þ ms � Vsc þ Vs� �
:r P; T; yð Þ ð9Þ

Dm ¼ msc þ ms ð10Þ
As the blank measurement was considered (msc+ms) and

(Vsc+Vs), as ms and Vs are sample mass and sample volume,
respectively. While in the blank measurement msc and Vsc

illustrated by the difference between the two outcomes and the
values of ms and Vs was measured. From this, the sample density rs

was identified. Since ms did not take into consideration the small
amount of inert gas adsorbed, the corrected mass ms needs to be
calculated by using Eq. (11) [45]:

mscorr: ¼ Dmatvac: � msc ð11Þ
where Dmat vac is the first segment reading of the balance at

vacuum. In this equation, the amount of inert gas adsorbed during
the buoyancy measurement for further accuracy and concerns.
Blank and buoyancy measurements were carried out whenever the
thermal operational conditions of the experiments changed or the
sample was exposed to the enviroment, where the mass and
volume of the sample might be effected by adsorbed air and
humidity [48].

Samples pretreatment and regeneration

Prior to each adsorption experiment, the adsorbent was
pretreated using an electrical heater along with the thermal bath
circulator. Pretreatment process was crucial to get rid of
contaminants and moisture trapped in the adsorbent pores and
cavities, using electrical heater under vacuum condition. According
to Tedds et al. [49], 200–250 �C of thermal treatment was regarded
as the best range for samples pretreatment and degassing/
regeneration. However, based on our thermal gravimetric analysis
(TGA) results, zeolites lost moisture and contaminants at around
200 �C and sample did not decompose until 800 �C. Therefore, in
this work, pretreatment and regeneration of the adsorbent was
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carried out at a temperature of 200 �C for at least 3 h until sample
weight decrease had stabilized.

Adsorption measurement

Adsorption equilibrium of pure gases was performed in a
magnetic suspension microbalance operated in a closed system.
After samples were pretreated and regenerated, gases were dosed
via into the reaction chamber directly. The sample of adsorbent
was weighed and placed in a basket suspended by a permanent
magnet through an electromagnet (magnetic suspension cou-
pling). The cell in which the basket was housed was then closed,
and vacuum was applied. An analytical balance connected to the
magnetic coupling receives the weight values measured inside the
cell, and through an acquisition system, records the data in system
software [37,50]. The magnetic suspension balance utilized in this
study was equipped with microbalance i.e.: 10�6 precision, 0.01 mg
resolution, <0.002% rdg uncertainty, and 0.04 mg reproducibility/
standard deviation). The balance readings were collected at
equilibrium for each segment and processed for further analysis.
The individual adsorbates and total mixture densities were
identified by the material balance and GERG2008 EoS. GERG
2008 [51] covers most of the natural gas components and
contaminants with a comprehensive assortment of working
conditions.

Multicomponent experimental adsorption
The water vapor–gas mixtures expressive advanced challenging

process to be initialized and evaluated. Water vapors are
complicated to be generated and dosed at vapor partial pressure
at liquid boiling points and premixed with gases at higher partial
pressures, to cater the mixture total pressure with avoided
condensation, especially at higher vapors concentration or
compositions demanded. In addition, limited dual phase identifi-
cation and analysis instrumentation recently existed.

In the water vapor–gas mixtures measurements, the experi-
ments took place by premixing the dosed gases with generated
water vapor at fixed combinations (99:1 gas/vapor). Then,
individual components were dosed accordingly at certain gas
and vapor pressures to cater for the determined compositions for
each particular isotherm point. This generation and mixing
technique would provide better accuracy outcomes for the data
collected before and after adsorption.

In multicomponent mixtures, three mixture configurations
were studied to determine the effect of CO2, CH4 and water vapor
(if any) presence in the mixture on the 5A molecular sieve zeolite
adsorption capacity and selectivity. The mixtures were considered
to cover a wide range of multi-component applications i.e. CO2:
CH4; CO2:H2O; CH4:H2O; premixed CO2:CH4:H2O and CO2:CH4

with preloaded H2O. The ratio binary component of CO2:CH4 was
fixed at 50:50, 30:70 and 70:30 while the ratio of H2O, if present in
the mixture, was fixed at 1%. In preloaded water vapor measure-
ments, the samples were preloaded with pure water vapor at the
same amount that was dosed as in the ternary premixed
measurements to achieve the same percentage dosed in the
premixed ternary mixtures i.e.: 1% water vapor. The measurements
were performed at the conditions of 50 �C and 70 �C and the
pressure was varied up to 10 bar.

The measurement for partial uptakes of each component in the
mixture was determined by calculating the adsorbed amount of
each component into the mixture independently with the aid of
GERG2008 EoS. The GERG2008 equation of state was based on a
multi-fluid approximation explicit in the reduced Helmholtz free
energy as deliberated in Eq. (12):

a d:t:xð Þ ¼ ao r:T:xð Þ þ ar d:t:xð Þ ð12Þ
where the ao represented the properties of the ideal-gas mixture at
a given mixture density r, temperature T, and molar composition x
as mentioned in Eqs. (13) and (14):

aoðr:T:xÞ ¼
XN
i¼1

xi a
o
oi r:Tð Þ þ ln xi

� � ð13Þ

The residual part ar of the reduced Helmholtz free energy of the
mixture is given by Eq. (14):

arðd:t:xÞ ¼
XN
i¼1

xia
r
oi d; tð Þ þ

XN�1

i¼1

XN
j¼iþ1

xixjFija
r
ij d; tð Þ ð14Þ

where d is the reduced mixture density and t is the inverse reduced
mixture temperature according to Eq. (15):

d ¼ r
rr xð Þ and t¼ TrðxÞ

T ð15Þ

where N represented the total number of components. Detailed
numerical descriptions of single and multicomponent mixtures
measurements and thermodynamic properties, which presented
using GERG2008 EoS were discussed in a study by Kunz and
Wanger [51].

Equilibrium isotherm models

Extended Langmuir (EL) model
Extended Langmuir model was used to model the adsorption

equilibrium data in the binary system of CO2/CH4 mixtures at
different concentrations (i.e. 50:50, 30:70, and 70:30) based on
single component data. The mathematical expression of extended
Langmuir model is given in Eq. (16):

qe;i ¼
qm;iKiPe;i

1 þ
Xn

j¼1
KiPe;i

ð16Þ

where qe,i is the uptake of component i, qm and Ki in Eq. (16), are
Langmuir constants for maximum adsorption capacity of the
adsorbents (mg/g) and absorptivity of the adsorbates (bar/mg) in a
single system, respectively.

qe;1 ¼ qm;1:KL;1:Pe;1

1 þ KL;1:Pe;1 þ KL;2:Pe;2
ð17Þ

qe;2 ¼ qm;2:KL;2:Pe;2

1 þ KL;1:Pe;1 þ KL;2:Pe;2
ð18Þ

where qm and KL in Eqs. (17) and (18) are Langmuir constants for
maximum adsorption capacity of the adsorbents (mmol/g) and
adsorptivity of the adsorbates in a single system, respectively [52].

The applications of extended Langmuir model to represent
adsorption equilibrium data in the binary system were reported in
several studies [53,54]. From the previous studies, it was known
that the evaluation of binary adsorption equilibrium data using
extended Langmuir model was performed by inserting the values
of qm and Ki parameters in a single system to calculate the
theoretical value of qe and compared it with experimental results.
Extended Langmuir model was applied on CO2 and CH4 single
adsorption data that fitted to Langmuir equilibrium isotherm
model. Langmuir constant and single component maximum
adsorption capacity at experimental operational conditions were
applied and analyzed accordingly.

Modified Extended Langmuir (MEL) model
In a binary system, the competitions (total or partial) between

adsorbate species for the adsorption sites on the solid surface



Fig. 3. Artificial neural network function (feed-forward ANN) (a) design generated
from MATLAB (b) the number of hidden neurons tested for minimum mean square
error (MSE) value.
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usually occur, which may act as the sorption-controlling factor.
Such phenomena result in the coverage of the solid surface by both
adsorbates with certain fractional loadings. Moreover, the adsorp-
tion potential on the surface is also affected by lateral interaction or
competition between adsorbate species in the system. From the
statements above, it is obvious that both Ki and qm parameters from
single Langmuir model cannot be adequately used to describe
adsorption behaviors in a binary system. Therefore, Kurniawan
et al. [52] were proposed an improved mathematical equation for
qm and Ki parameters for binary adsorption system, which is given
in following Eqs. (19)–(21):

qm binaryð Þ ¼ qm;1 singleð Þu1 þ qm;2 singleð Þu2 ð19Þ

K1; binaryð Þ ¼ K1 singleð Þexp
�u2
u1

� �
ð20Þ

K2; binaryð Þ ¼ K2 singleð Þexp
�u1
u2

� �
ð21Þ

where, u1 and u2 are loading fraction of component 1 and 2,
respectively. Following this technique will enable the effect of the
initial composition studied of the binary mixture to be visibly
observed in addition to the intensity effect. This wi correct the
ideality behavior deviations that might highly affect the outcomes
of the theoretical model and predictions. Lastly, the amount
adsorbed for the binary mixture is described by Eqs. (22) and (23),
Langmuir constant from single adsorption data was utilized. In
addition, the molar fraction required to be studied for the
particular configuration of the mixture was considered.

qe;1 binð Þ ¼
qm;1 singð Þu1 þ qm;2 singð Þu2

� 	
KL;1 singð Þexp �u1

u2

� 	
Ce;1 binð Þ

1 þ KL;1 singð Þexp �u2
u1

� 	
Ce;1 binð Þ þ KL;2 singð Þexp �u1

u2

� 	
Ce;2 binð Þ

ð22Þ

qe;2 binð Þ ¼
qm;1 singð Þu1 þ qm;2 singð Þu2

� 	
KL;2 singð Þexp �u1

u2

� 	
Ce;2 binð Þ

1 þ KL;1 singð Þexp �u2
u1

� 	
Ce;1 binð Þ þ KL;2 singð Þexp �u1

u2

� 	
Ce;2 binð Þ

: ð23Þ

The model applied to pure adsorption data of single CO2 and
CH4 was also utilized to predict binary CO2/CH4 mixtures at
different configurations (i.e. 50:50, 30:70, and 70:30). The outcome
would be compared with the binary gaseous mixture data from
experimental results. This will give a better idea whether the
model could improve the predicted adsorption trend by taking
considerations the polar moment and polarizability of single
component affinity for adsorption and selectivity in binary
mixtures.

Artificial neural networks (ANN)

In this study, the ANN architecture as illustrated in Fig. 3a was
selected as a feedforward ANN with two hidden layers consisting of
12 and 8 neurons for binary gases mixtures with preloaded water
vapor. The number of hidden neurons tested to achieve the lower
mean square error (MSE) is illustrated in Fig. 3b. Twelve (12)
hidden neurons were selected in the case of ternary mixtures as
MSE showed the lowest value which was the closest to zero
compared to the other 20 hidden neurons tested. The 5 input
variables are temperature, pressure, CO2, CH4, H2O i.e. in ternary
mixtures, and total mixture uptakes, and the 4 output variables are
CO2, CH4, H2O and Mixture uptakes. The set of experimental data
was divided into three groups. Around 70% of the experimental
data was used for the training step, 15% for testing and other 15%
for validation [55]. The training function selected for this step is
known as trainlm. Trainlm is a widely used training function as it
updates the results according to Levenberg–Marquardt optimiza-
tion method. The results from the ANN modeling are discussed in
the results and discussion section.

Results and discussions

Verification of adsorption performance

Before the measurement of adsorption in binary gas and water
vapor–binary gas environment was conducted, the adsorption of
single gas (CO2 and CH4) on 5A zeolite at 50 �C and 70 �C and
pressure up to 10 bar was measured and compared with previously
reported data by Mofarahi et al. [56]. In this work, CO2 adsorption
on 5A MSZ showed higher adsorption 4.05 mmol/g compared to
1.23 mmol/g for CH4 at 50 �C. Lower adsorption uptakes were
observed for both adsorbates at 70 �C. The adsorption of CO2 was
3.06 mmol/g and 1.21 mmol/g for CH4. Fig. 4 shows the comparison
of measured data obtained in this work and literature data. In
general, the measured data in this work is quite close to the
literature data. The slight difference in the measured data between
these two works could be due to the different experimental setup
employed whereby Mofarahi et al. [56] measured the adsorption
based on volumetric setup while the measurement in this work
was based on volumetric-gravimetric setup.

Equilibrium isotherm models for CO2 and CH4

Two and three parameters isotherm models, namely Langmuir,
Freundlich, Sips, and Toth was conducted for pure gas adsorption
data for validation and analysis of CO2 and CH4 adsorption
behavior. Fig. 5 illustrates the isotherm models fitting on CO2 and
CH4 experimental data at a temperature of 50 �C and 70 �C and
pressure up to 10 bar. The results show high agreement for most of
the isotherm models. Langmuir and Toth equilibrium isotherm
models showed the highest fitting for CO2 adsorption experimen-
tal data on 5A MSZ while Freundlich isotherm model showed the
lowest agreement (r2 = 0.886) with the experimental data as given
in Table 1.

Adsorption of CH4 on 5A zeolite showed almost linear uptake as
shown in Fig. 5. The equilibrium isotherm parameters for CH4

uptake on 5A zeolite at a temperature of 50 �C and 70 �C, as listed in



Fig. 4. Pure CO2/CH4 components adsorption on 5A MSZ at temperature of (a) 50 �C
and (b) 70 �C at increment pressure up to 10 bar.

Fig. 5. Equilibrium isotherm models for (a) CO2 and (b) CH4 adsorption on 5A
zeolite at 50 �C and 70 �C temperature and up to10 bar pressure.

Table 2
Adsorption equilibrium isotherm parameters for CH4 adsorption on 5A MSZ at 323 K
and 10 bars.

Isothermal parameters

Adsorption at 323 K Adsorption at 343 K

5A/CH4 R2 K qm n R2 K qm n

Langmuir 0.989 0.062 1.658 / 0.989 0.989 1.356 /
Freundlich 0.851 3.077 1.786 1.549 0.851 0.851 1.451 2.069
Toth 0.999 0.045 1.596 0.662 0.999 0.999 1.438 0.999

Table 1
Adsorption equilibrium isotherm parameters for CO2 adsorption on 5A MSZ at 323 K
and 10 bar.

Isothermal parameters

Adsorption at 323 K Adsorption at 343 K

5A/CO2 R2 K qm n R2 K qm n

Langmuir 0.999 1.219 4.564 / 0.999 0.915 4.358 /
Freundlich 0.741 151.774 4.658 13.568 0.886 103.490 4.589 4.411
Toth 0.999 0.243 4.679 0.555 0.996 0.892 4.657 1.110
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Table 2 showed that the experimental data were in agreement with
Langmuir, and Toth equilibrium isotherm models. Equilibrium
parameters showed that monolayer adsorption is the most
common behavior illustrated in CH4 adsorption on 5A with high
Langmuir agreement. Freundlich Equilibrium model showed lower
agreement with the experimental data compared to the other
equilibrium models which were clarified according to the values of
R2. However, Freundlich isotherm model constant deliberated a
value more than 1, which is a supported physical adsorption
behavior. The validation of the equilibrium characteristics
obtained from the equilibrium isotherm models provided the
opportunity to apply the equilibrium models parameters for binary
mixtures theoretical predictions.

Experiment and model evaluation for binary and ternary component
measurements

Binary gas mixtures
In this work, three different compositions were studied for CO2:

CH4, to identify the deviation effect in multi-components
existences by identifying initial compositions on the selective
adsorption of individual gases and the total uptake of the mixture.
The results of the binary gaseous mixtures adsorption on 5A zeolite
are presented in the Fig. 6. The results verified the whole mixture
gravimetric uptake, with the individual isotherms of each
component inside the mixture experimentally, which deliberated
the novelty of this work.

The results show that CO2 has the higher potential for
adsorption on 5A zeolite. CO2 has the highest affinity due to its
strong quadrupole moment [57], while lower potential presented
for CH4. Furthermore, at different CO2 compositions, the whole
mixture uptake was affected. As shown in Table 3, the total
gravimetric uptake of the whole mixture increased with the higher
CO2 composition at 70% compared to 50 and 30% CO2. In addition,
CO2 still expressed higher adsorption uptake independently even
at lower compositions as in the 30:70 CO2:CH4 mixture.



Fig. 6. Experimental and predicted by EL and MEL models binary CO2:CH4 mixtures on 5A zeolite at 50 �C temperature and up to 10 bar pressure.

Table 3
Experimental binary gases CO2:CH4 mixture total and partial uptakes on 5A MSZ.

Uptakes at 50 �C (mmol/g)

Configuration 30:70 50:50 70:30

Total mixture 2.684 2.909 2.971
CO2 1.647 2.481 2.806
CH4 1.059 0.428 0.164

Uptakes at 70 �C (mmol/g)

Configuration 30:70 50:50 70:30

Total mixture 2.412 2.656 2.767
CO2 1.482 2.297 2.669
CH4 0.930 0.358 0.1439
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This experimental selective adsorption behavior of CO2 on 5A
zeolite compared to the potential adsorption of CH4 are validated
with the theoretical selectivity analysis performed by the previous
researchers as mentioned earlier and the pure measurements were
done in this study. These outcomes were in agreement with the
aforementioned reported data at nearby conditions for the
adsorption of CO2 and CH4 on zeolites other microporous solid
adsorbents [30,58].

EL model was applied to estimate binary CO2:CH4 mixtures
according to the individual components adsorption experimental
data. The outcomes were linked with the experimental multicom-
ponent binary and ternary measurements achieved by the
volumetric-gravimetric method at the same operational condi-
tions of the pure component measurements.

Fig. 6 displays the predicted binary combinations by EL model
and its comparison with experimental data of binary mixtures i.e.
CO2 and CH4 at same compositions. From the figure, it is observed
that the predicted binary mixtures followed the ideal selectivites of
the pure adsorption. Irrespective the attraction to adsorb distinct
components within the binary mixture, as quadrupole moment
and polarizability of CO2 is higher than CH4. This leads to the
inference that 5A has the potential to adsorb CO2 if competing with
CH4, despite the configuration of the individual components in the
mixture.

However, the predicted amount of CO2 in the binary mixture at
50 �C was almost the same with a very low decline in values
compared to pure CO2 component adsorption data, which is not
reflected the best prediction that can be relied on. In the case of
binary mixture predicted on 5A MSZ at 70 �C, the pure CO2

components adsorption data illustrated higher values compared to
predicted fractions in the mixture for both components. On the
other hand, the results acknowledged the temperature effect on
the adsorption process where the results obtained by the EL at
70 �C were lower in general compared to the first case i.e. at 50 �C.
However, this behavior reflects the flow dependence on the pure
adsorption data. The EL prediction is still limited and totally relied
on the experimental data obtained by the pure component
outcomes and cannot be extended for further predictions at other
configurations as perceived in MEL model.

Similarly, Modified Extended Langmuir (MEL) model was
applied to predict the adsorption outcome to evaluate its
suitability compared to the EL model. The outcomes of binary
gaseous CO2:CH4 mixtures on 5A MSZ at the studied configuration
i.e. 30:70, 50:50, and 70:30 CO2:CH4 mixtures at a temperature of
50 �C and 70 �C, and pressure up to 10 bar are illustrated in Figs. 6
and 7. MEL model exhibited an altered behavior compared to EL
model. CO2 uptake in EL model showed higher partial uptakes as
compared to CH4, even with advanced values of initial CH4

configurations in the mixture.
However, in the MEL model, at 50 �C, the situations were

different, as the anticipated mixture followed the fractional
loading parameter of the two components, which presented the
amount of each element existing into the mixture. With higher
presence of CO2 in the mixture 70% yCO2

, the predicted quantity
adsorbed of CH4 was practically very low at 2.72 mmol/g CO2,

compared to 0.14 mmol/g CH4. This is highly denoted by the
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quadrupole moment and polarizability of CO2, which is highly
associated to CH4. This increases the potential of 5A zeolite to
adsorb more CO2 to CH4 at the mixture, despite the composition of
the distinct adsorbates.

Further increase in the CH4mixture composition led to decrease
in CO2 predicted uptakes, as demonstrated in 50:50 arrangements.
When the CO2 concentration was decreased from 70% to 50%, the
predicted CO2 uptake at 50 �C decreased from 2.72 mmol/g CO2 to
1.71 mmol/g. On the other hand, the predicted CH4 uptake
increased from 0.13 to 0.31 mmol/g as its concentration was
increased from 30% to 50%. These outcomes are closer to the
measured experimental data as compared to the data predicted
from MEL model. As CH4 concentration increases in the mixture,
the competition among CH4 and CO2 on occupying 5A zeolite’s
pores would increase as well. Even though CO2 has more affinity
and potential to be adsorbed over CH4, CO2 adsorption still can be
affected by the presence of huge amount of CH4. Thus, this high
percentage of CH4 existence in the mixture will not only increase
the competition but also creates a hindrance for CO2 to be adsorbed
easily on 5A MSZ surface.

The effect of increasing the concentration of CH4 in the mixture
is clearly shown in CO2:CH4 mixtures at the composition of 30:70.
CO2 uptake was significantly decreased down to 0.51 mmol/g when
its concentration was decreased from 70% to 30%. At the same time,
CH4 uptake was increased up to 0.92 mmol/g as compared to 30%
CH4 existence at the same operational conditions.

Fig. 7 was demonstrated the results of MEL model for CO2/CH4

mixtures on 5A MSZ at 70 �C. The results explained the feasible
outcomes with the lower total mixture and single components
capacities compared to the same configuration on 5A zeolite at the
50 �C case. Although, the predicted CO2 partial adsorption isotherms
showedlowercapacities (0.65 mmol/g)comparedtoCH4(0.75 mmol/
g) with high methane existence in 30:70 CO2:CH4 mixtures.

5A MSZ exposed a favorable potential as a solid adsorbent for
separating CO2 from CH4 via adsorption. However, for CO2:CH4
Fig. 7. Experimental and predicted by EL and MEL models binary CO2:CH4
mixtures predicted at 30:70 configuration, CH4 showed higher
adsorption uptakes in mixture compared to CO2 which might not
be the real case, as CO2 is known to have higher adsorption affinity
as compared to CH4. According to higher quadrupole moment and
polarizability, even with lower compositions availability in the
mixture, CO2 was expected to have higher adsorption capacity and
selectivity.

This issue was highlighted by Harlick and Tezel [59] as they
observed that the precision of the forecast of CO2 for different
models varies depending on the range of concentration in the gas
phase. The EL model predicted CO2 binary isotherm exactly for CO2

concentrations higher than 30%. Thus, the model failed to describe
the binary mixture at a lower CO2 concentration (for instance 30%
and lower) at relatively low pressures i.e. up to 1 bar. In contrast,
the above concentration of components that overlaps the
adsorption affinity for single components, which reflects the
unreliability of the phenomena that the prediction models rely on.
However, the same outputs at higher pressure declared in this
study, as MEL model did not describe the system well at lower CO2

compositions in the mixture.
The outcomes of this section proved that theoretical multicom-

ponent models usually did not provide the optimum method to
predict the mixtures behavior on solid adsorbents, as observed
from the results of MEL model and EL model although the models
were endorsed by several previous studies over IAST and other
models. Therefore, under such scenario, trained model such as
ANN model could be the alternative option.

Single gas–water vapor mixtures
Figs. 8 and 9 present the adsorption isotherm of premixed

binary mixtures of CO2:H2O and CH4:H2O at 99:1 mixture
compositions at 50 �C and 70 �C, respectively. The outcomes
clarified that water vapor showed lower selective adsorption of
the binary mixtures compared to the other adsorbates, in term of
gases uptake. Water vapor existence declines the overall
mixtures on 5A zeolite at 70 �C temperature and up to 10 bar pressure.



Fig. 8. Single gas–water vapor mixtures of CO2:H2O and CH4:H2O on 5A MSZ at 323 K and 10 bar.

Fig. 9. Single gas–water vapor mixture of CO2:H2O and CH4:H2O on 5A MSZ at 343 K and 10 bar.

Table 4
Single gas–vapor CO2:H2O and CH4:H2O mixtures total and partial uptakes on 5A
MSZ.

Uptakes at 50 �C (mmol/g)

Configuration CO2:H2O CH4:H2O

Total mixture 3.150 0.985
CO2/CH4 3.030 0.905
H2O 0.053 0.030

Uptakes at 70 �C (mmol/g)

Configuration CO2:H2O CH4:H2O

Total mixture 2.955 0.725
CO2/CH4 2.857 0.678
H2O 0.062 0.030
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adsorption uptake of the whole mixture, similarly as individual
components. Water vapor showed slightly higher adsorption with
CO2 compared to CH4 binary mixtures. At a temperature of 50 �C,
the outcomes showed 0.053 mmol/g for water vapor with CO2 and
0.030 mmol/g uptake with CH4, while, at the temperature of 70 �C,
water vapor showed 0.062 mmol/g with CO2 and 0.030 mmol/g
with CH4. These outcomes observed that the adsorption of water
vapor was not significantly affected by the adsorption temperature
increase compared to the other gaseous adsorbates, and lower
adsorption potential for CH4 compared to CO2. It might be referred
to the phase transitions in natural zeolites and the significance of
PH2O that exaggerated the adsorption capacity and selectivity of
zeolites, as described by several studies [60,61] while discussed the
adsorption of pure CO2 and binary mixtures of CO2:H2O at 0, 25,
and 50 �C at ambient pressure. The reported outcomes showed that
the increase of water existence will drop the whole binary mixture
uptake even under the same conditions, and that might be due to
the competition of components or the lower adsorption of the
main adsorptive component (for instance CO2) [62].

Based on Figs. 8 and 9, it is observed that water vapor existence
did not affect the uptake isotherm patterns for both adsorbates.
Isotherms track the same trends as their pure adsorption isotherm,
which almost linear for CH4 and type I for CO2 adsorption. However,
water vapor presence diminished the adsorption uptake for both CO2

and CH4. When there is a trace amount of H2O in the system, CO2 and
CH4 adsorption declined by approximately 25% from 4.05 mmol/g
and 1.23 mmol/g for pure components adsorption to 3.030 mmol/g
CO2and 0.905 mmol/g forCH4at50 �C. Almostsame drop percentage
at the same reduced performance was also observed for adsorption
at a temperature of 70 �C, as shown in Table 4, with a trace amount
of H2O as low as 1% of the binary mixture. This might be attributed
to the quadrupole momentum (13.71 �10�40 for CO2; and 0 for CH4)
or high degrees of polarizability of CO2� 29.1 �10�25 compared to
CH4� 25.9 � 10�25 [53,61]. These outcomes were in agreement with
the aforementioned data as CO2 has the peak quadrupole moment,
which monitors in the order CO2> N2> O2> CH4with values of 13.4,
4.7, 1.3, 0, respectively. However, due to the octupole moment of the
methane molecule, CH4 might show higher equilibrium adsorption
capacity of some adsorbents compared to N2 and O2 [19].

Binary gas–water vapor mixtures
Figs. 10 and 11 show the total and selective adsorption of the

three ternary mixtures configurations at 50 �C and 70 �C, respec-
tively. On top of that, the individual isotherm measured for each
component in the mixture, the total amount adsorbed of the three
components for each point in the figure will give the whole
mixture gravimetric adsorption uptake at the same particular
point. Such rehearsal motivation delivered a new field of interest,



Fig. 10. Ternary CO2:CH4:H2O mixtures total and partial uptakes on 5A zeolite at experimental condition of 50 �C and up to 10 bar.

Fig. 11. Ternary CO2:CH4:H2O gaseous–vapor total mixtures and partial uptakes on 5A zeolite at experimental condition of 70 �C and pressure of up to 10 bar.
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Table 5
Ternary CO2:CH4:H2O mixtures total and partial uptakes on 5A MSZ.

Uptakes at 50 �C (mmol/g)

Configuration 30:69:1 50:49:1 70:29:1

Total mixture 2.803 3.129 3.214
CO2 1.724 2.351 2.713
CH4 1.101 0.756 0.500
H2O 0.057 0.054 0.054

Uptakes at 70 �C (mmol/g)

Configuration 30:69:1 50:49:1 70:29:1

Total mixture 2.364 2.784 2.672
CO2 1.492 2.121 2.277
CH4 0.872 0.686 0.395
H2O 0.058 0.056 0.066
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for separation and purification knowledge recently existed [63–66]
in the coming future investigations. However, ANN model was
developed and used to predict the combinations at the same
compositions and operational conditions. The predicted data
showed high agreement and certainty linked with the experimen-
tal data selected. This encouraged the simulation of further
combinations and compositions to be studied and analyzed, which
will be illustrated in the next section, to observe the artificial
intelligence reliability in term of multicomponent mixtures and
applications.

The selective isotherms indicated that CO2 gas had the
preference to be adsorbed first by 5A zeolite, even with the
competitiveness between the three adsorbates considered. Water
vapor experienced the lowest uptake of the mixture, and water
vapor existence reduced the total adsorption uptake for the other
components. This trend is clearly demonstrated by comparing the
ternary mixtures results with the gaseous binary without water
vapor existence as shown in Figs. 9 and 10. Table 5 presents the
gravimetric total uptake of the ternary mixtures CO2:CH4:H2O at
three various configurations (50:49:1; 30:69:1; and 70:29:1). In
addition, individual uptakes for each component as dependent
isotherms have been illustrated separately. From the data
presented it can be visibly observed how individual uptakes of
CO2 and CH4 affected by initial compositions of the ternary
mixtures studied. CO2 showed high adsorption uptake even with
low initial loading as in the case of 30:69:1, and how the total
uptake reduced with the decrease of initial CO2 loading. In the case
of 70% CO2, the amount of CO2 adsorbed showed high uptake
compared to the other situations.

It can be observed from the ternary mixtures results that more
CO2 percentage directs to higher uptake recorded for the total
mixture uptake, which connected the proportional relation
between CO2 existence and total uptake for the mixture. With a
higher concentration of CO2 in the ternary mixture also revealed
that water vapor adsorption was promoted at the same time. From
the ternary (i.e.: 70% CO2) and binary mixtures (i.e.: 99% CO2) the
water vapor adsorption showed higher values whenever CO2 was
mixed in higher compositions.

However, in the case of 50 �C binary (99:1 CO2:H2O) mixture,
lower values of water vapor adsorption capacity was observed
compared to ternary 70%CO2: 29%CH4: 1% H2O mixtures adsorp-
tion and the same trend was observed in the case of 70 �C. This
might refer to a longer period for ternary experiments (around
72 h) equated to faster CO2:H2O experiment period (around 48 h).
Zeolites tend to have high adsorption capacity to water vapor with
the very long period for overload accomplishments. Zeolites have
more attraction to adsorb humidity compared to silica gel or clay.
This was reflected by the high heat of adsorption for water on
zeolites matched to the other solid desiccants [67].

Binary gas mixtures with preloaded water vapor
For this study, the 5A zeolite was pre-saturated with water

vapors, with the same percentage of water presented to the
adsorbents at ternary mixture measurements. Gas mixtures of CO2

and CH4 were premixed and dosed to the zeolite at the same
composition and conditions as utilized in the binary gas mixtures,
to study the difference in adsorption performance between binary
gaseous mixtures, the pre-mixed ternary mixtures of CO2:CH4:
H2O, and CO2:CH4 adsorbed on zeolites preloaded with water.
Figs. 12 and 13 present the difference of binary gaseous mixtures
CO2:CH4 with the existence of preloaded water vapor at different
configurations. On top of that, the ANN model was applied to
predict the mixtures. The predicted data showed high agreement
with the experimental data tested. Further simulated combina-
tions were studied and analyzed, which will give better vision on
the possibility to apply artificial intelligence for such technical
applications and kind of data.

As shown in Table 6, at CO2:CH4 mixture of 50:50, the overall
adsorption uptake in the case of 50 �C was slightly reduced from
3.129 mmol/g for the ternary mixture, as shown in Table 5, to
3.112 mmol/g when 1% of water vapor was preloaded in the zeolite.
CO2 and CH4 individual adsorption within the mixture also slightly
dropped from 2.351 mmol/g and 0.756 mmol/g, respectively in
ternary mixtures to 2.325 mmol/g and 0.743 mmol/g in preloaded
water vapor measurements. The same trend is observed in the case
of 70 �C as well, with lower values of total and partial components
uptakes in preloaded water vapor zeolites and this observation was
consistent for CO2:CH4 mixtures at 30:70 and 70:30 ratios.

This can be referred to the water vapor invasion of the deep
pores and cavities of the adsorbent, which will be less vacant to
accommodate other adsorbents such as CO2 or CH4. Moreover, the
reduction was highly noticeable if compared to the binary gaseous
measurements without water presence at same conditions. In the
30:70 mixing ratio of CO2:CH4and 50 �C condition, the overall
uptake of the mixture was reduced from 2.803 mmol/g in ternary
mixture to 2.802 mmol/g with preloaded water vapor, while the
individual CO2 and CH4 adsorption reduced from 1.724, and
1.101 mmol/g in ternary mixture to 1.718, 1.086 mmol/g in the
preloaded water vapor mixtures. In the case of 70:30 mixing ratio
of CO2, CH4, the total mixture reduced from 3.214 mmol/g to less
than 3.193 mmol/g with preloaded water vapor mixture, while CO2

and CH4 selective individual components uptake in mixture
dropped from 2.713, 0.500 mmol/g in ternary mixture to 2.709,
0.499 mmol/g in preloaded water vapor mixtures, respectively.

ANN modeling and simulation
Since ANN model has the flexibility to be trained based on the

assigned output, this model is used in this study to predict the
more complicated multicomponent mixture environment. Fig. 14
shows the comparison between experimental and ANN model
predicted data for ternary mixture at the studied conditions i.e.
50 �C and 70 �C and pressure up to 10 bar pressures on 5A MSZ. The
values of R2 for the fitted data comparison between experimental
and ANN model predicted data is shown in Fig. 14. From the values
of the R2 along with AAD% i.e.1.03–1.79, it can be perceived that the
predicted data by ANN model were highly fitted and in good
agreement with the experimental results, and thus can be further
processed to simulate other formations and compositions of
multicomponent mixtures.

According to the consistent experimental incline increment of
the total mixture with CO2 increase percentage in the mixture, and
the reversed proportion with CH4 on the both studied thermal
conditions. Where the X-axis represented the yCO2

in the mixture,



Fig. 12. Binary CO2:CH4 gaseous mixtures with pre-saturated water vapor on 5A zeolite at temperature of 50 �C and pressure up to 10 bar.

Fig. 13. Experimental binary CO2:CH4 gaseous mixtures with the pre-saturated water vapor on 5A MSZ at temperature of 70 �C and pressure up to 10 bar.
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Table 6
Binary gaseous CO2:CH4 mixture total and partial adsorption uptakes for pre-
saturated 5A zeolite samples with water vapor.

Uptakes at 50 �C (mmol/g)

Configuration 30:70 50:50 70:30

Total mixture 2.802 3.112 3.193
CO2 1.718 2.325 2.709
CH4 1.086 0.743 0.499

Uptakes at 70 �C (mmol/g)

Configuration 30:70 50:50 70:30

Total mixture 2.342 2.697 2.677
CO2 1.493 2.120 2.278
CH4 0.871 0.652 0.399

Fig. 14. Comparison between experimental and ANN model predicted uptakes data
for ternary mixtures on 5A MSZ.

Fig. 15. Simulated total and partial uptakes of ternary CO2:CH4:H2O mixtures on 5A
MSZ using ANN model at pressure of up to 10 bar and temperature of (a) 50 �C and
(b) 70 �C.

Fig. 16. Comparison between experimental and ANN model predicted uptakes data
for binary gaseous with pre-saturated water vapor mixtures on 5A MSZ.
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the Y-axis expressed the pressure and the Z-axis demonstrated the
total and partial components uptakes at that particular composi-
tion. Similarly, for water vapor, the data showed the increased
water uptake with CO2 increased composition in the mixture for
the experimental (i.e. 30, 50, and 70% yCO2

) and simulated via ANN
model (10, 40, and 90% yCO2) outlined data as illustrated in Fig. 15.
The consistent results may deliver a highlighted point of view for
separation of natural gas that leads to more informative and
innovative studies linked to selective separation of undesired
components within the mixture combinations.

Fig. 16 shows the comparison between experimental and ANN
model predicted data for binary gaseous with pre-saturated water
vapor mixtures at the studied conditions i.e. 50 �C and 70 �C and
pressure up to 10 bar pressures on 5A MSZ. The values of R2 for the
fitted data comparison between experimental and ANN model
predicted data is shown in Fig. 16. The predicted data by ANN
model was also highly fitted and in good agreement with the
experimental results for pre-saturated water vapor condition.

Fig. 17 was illustrated the composition variation effect of the six
(6) configurations (i.e. simulated by ANN) on both studied
temperatures. In the figures, the outlined data showed an obvious
difference in CO2 and CH4 partial uptakes compared to the total
mixture uptake. The drop on all configurations can be observed
after an increase in adsorption temperature. However, the
simulated data showed good consistency to the experimental
data related to the total and partial uptakes in terms of
composition and temperature effects in the studied pressure
range.
These results signify that preloaded water vapor reduces the
adsorption capacity and selectivity as a greater competitive
compared to the equal opportunity to ternary mixtures compo-
nents. This observation is consistent with findings by Billemont
et al. [68] who studied for adsorption for pure CO2 and CH4 on pre-
adsorbed water samples, as water existence impact on adsorptions.
The findings of their study indicated that the pore-filling



Fig. 17. Simulated binary gaseous CO2:CH4 Mixtures with pre-loaded water vapor
using ANN model on 5A MSZ at (a) 323 K and (b) 343 K and 10 bar.
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mechanism did not show highly liability by water existence and
the adsorbed amount of methane or carbon dioxide declined
linearly with the value of water preloaded, which agreed with the
outcomes of this work, with a further extension for multi-
component systems analysis.

Conclusion

In this work, a newly developed volumetric-gravimetric
system with implemented GERG2008 Eos was utilized to measure
CO2:CH4:H2O selective adsorption for every single component in
the gas–vapor mixture. Binary and ternary measurements
revealed that the entire isotherm followed the same trend as
the highest component percentage, while the higher CO2

percentage led towards higher total uptake of the mixture.
Correspondingly water vapor existence noticed to be reduced the
total mixture uptake, in addition to the reduction of individual
components uptakes. However, further reduction effect was
observed with the preloaded water vapor compared to premixed
ternary combinations. CO2 and CH4 showed lower uptake in
single gas–vapor mixtures compared to pure adsorption, for
instance, �4.05 mmol/g compared to 1.23 mmol/g for CH4 at
50 �C. Therefore, the existence of water vapor can exert a negative
influence on capacity and selectivity of solid adsorbent studied.
ANN model predicted data showed high agreement with the
experimental ternary measurements with high R2 and concise
low AAD% values �1.03–1.79. Also, the simulated combinations
showed high consistency to experimental data and temperatures
difference, compared to EL and MEL.
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