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Abstract
Artificial Intelligence (AI) could revolutionize our ability to understand and address climate change. Studies to date 
have focused on specific AI applications to climate science, technologies, and policy. Yet despite the vast demonstrated 
potential for AI to change the way in which climate research is conducted, no study has presented a systematic and com-
prehensive understanding of the way in which AI is intersecting with climate research around the world. Using a novel 
merged corpus of scholarly literature which contains millions of unique scholarly documents in multiple languages, we 
review the community of knowledge at the intersection of climate change and AI to understand how AI methods are 
being applied to climate-related research and which countries are leading in this area. We find that Chinese research 
institutions lead the world in publishing and funding research at the intersection of climate and AI, followed by the 
United States. In mapping the specific AI tasks or methods being applied to specific climate research fields, we highlight 
gaps and identify opportunities to expand the use of AI in climate research. This paper can therefore greatly improve 
our understanding of both the current use and the potential use of AI for climate research.

Keywords  AI · Climate change · China · AI tasks and methods · Publication analysis

1 � Background

Artificial Intelligence (AI) could revolutionize our ability to understand and address climate change. AI tasks and meth-
ods can increase the speed of problem solving with applications for better understanding the causes of climate change, 
responding to its impacts, and formulating solutions [1, 6, 11].

Today, scholars have begun to analyze the potential role that AI could play in addressing global climate change, 
both through improving our scientific understanding of the causes and impacts of climate change and by helping to 
develop solutions [22, 57]. We are increasingly seeing examples of how AI and machine learning can be used to improve 
the accuracy of climate system modeling [5], fill time series data gaps [26], estimate emissions inventories [20], refine 
climate scenario projections [44] and climate impact assessments [12], as well as develop applications for low carbon 
technology deployment through power, transportation and building system optimization [7, 8].

Multiple studies have shown that that AI simulations and machine learning are being integrated into weather and 
climate modeling, including emulating and forecasting weather patterns and climate processes with greater consistency, 
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of Foreign Service, Georgetown University, Washington, DC, USA. 2Center for Security and Emerging Technology, Edmund A. Walsh School 
of Foreign Service, Georgetown University, Washington, DC, USA. 3Department of Computer Science, Georgetown University, Washington, 
DC, USA. 4Communications, Culture and Technology Program, Georgetown University, Washington, DC, USA.
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data efficiency, and improved generalization [28, 32, 36, 54, 55]. AI is used in in flood risk modeling frameworks to increase 
the performance and accuracy of prediction methods [43, 46, 61]. Using neural networks for weather and climate mod-
eling has improved agriculture and crop yield predictions under a range of climate scenarios, and machine learning 
algorithms have been applied in areas such as monitoring soil quality, managing crops, and modeling evapotranspira-
tion, rainfall, drought, and pest outbreaks [15, 50, 60].

AI algorithms are increasingly being used for improving the efficient management of natural resources. For example, 
combining deep learning with statistical techniques could create more useful assessments of the impact of deforestation 
on rising carbon emissions in metropolitan areas [34]. In addition, machine learning approaches are being applied in 
developing low carbon materials [19]; for example the application of machine learning in optimizing concrete and steel 
production have demonstrated how AI can be integrated into supply chain modeling for heavy industries [24, 39, 51]. AI 
frameworks have been applied to minimize water consumption and emissions from oil and gas reservoirs, while other 
research has demonstrated methods using machine learning in assessing the carbon footprint of buildings [13, 16, 29, 47].

Many studies have used AI methods in renewable energy research and demonstrated the broadening number of 
use cases for integrating AI into renewable energy systems. AI techniques are becoming a key tool in deploying data-
integrated renewable energy networks [2, 4, 23, 37]; estimating and forecasting solar radiation resources [17, 30, 31, 38] 
and wind energy resources; [18, 25, 63] as well as in micro-grid management [27, 42, 58].

Additionally, AI has been shown to be a powerful tool to assess and develop carbon markets and generate more 
accurate carbon price models, including dynamic carbon pricing mechanisms [3], and more robust comparison models 
for carbon price forecasting [56]. Such methods have been applied to studies of emissions trading schemes including 
in China [35] and the UK [45].

While we have a sense of the general scope of climate change research being undertaken [21, 49, 52, 62], and studies 
have previously laid out the potential for AI to improve climate research and enable the achievement of global sustainable 
development goals [48, 53], no studies to date have taken a systematic and comprehensive approach to characterizing 
the way in which AI is intersecting with climate change research at a large scale, despite the vast demonstrated potential 
for AI to change the way in which climate research is conducted.

In this paper we map the community of knowledge at the intersection of climate change and AI to review how AI 
methods are being applied to climate related research, and which countries are leading in the application of AI to climate 
research. In mapping the specific AI tasks or methods being applied to specific climate research fields, we highlight gaps 
and identify opportunities to expand the use of AI in climate-related research.

Our analysis is based on a novel merged corpus of scholarly literature which contains millions of unique scholarly 
documents in multiple languages, and associated research clusters which are organized into a Map of Science. This is 
the first such study of the application of AI tasks and methods to climate change research using such a comprehensive 
data set. This paper can therefore greatly improve our understanding of both the current use and the potential use of 
AI for climate research.

2 � Methods

In order to map the community of knowledge at the intersection of climate change and AI, we use a novel merged 
corpus of global scholarly literature, including Digital Science’s Dimensions, Clarivate’s Web of Science, Microsoft Aca-
demic Graph, China National Knowledge Infrastructure, arXiv, and Papers with Code, with CSET’s Map of Science.1 This 
dataset allows for a far more comprehensive review than most traditional bibliometric analyses. In addition, it includes 
more than 120,000 research clusters derived from citation relationships within the merged corpus. Research clusters 
are groupings of scholarly documents based on citation links, not on topic similarity or author networks; thus, research 
clusters are groupings of scientific publications that address similar research questions. Each research cluster includes a 

1  China National Knowledge Infrastructure is furnished for use in the United States by East View Information Services, Minneapolis, MN, 
USA. Dimensions is provided by Digital Science, Web of Science is provided by Clarivate Analytics, and China National Knowledge Infrastruc-
ture is furnished for use in the United States by East View Information Services, Minneapolis, MN, USA.
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set of research publications and aggregated metadata generated from the member publications, such as, key areas of 
research (fields and topics), key researchers in the field, and key funders.2

We perform our analysis by identifying climate change related research papers via a keyword search, linking the 
publications to their research clusters, and then analyzing research clusters of interest. Figure 1 illustrates our data col-
lection pipeline, starting with a set of keyword publications and ending with a set of research clusters and their member 
publications. Each dot in the map of science represents a research cluster and is colored by its broad area of research.

This scientific research data pipeline enables us to find research clusters of interest by locating research publications in 
the Map of Science. We can then look at a subset of research clusters and analyze aggregate statistics from their member 
papers. This approach to identifying scientific research of interest requires a seed set of publications. We generated a 
scientific research corpus of climate change literature ( Rclimate ) using a regular expression search. We generated a scientific 
research corpus of climate change literature using a regular expression search in English and Chinese, including terms 
for climate change, global warming, carbon emissions and low carbon (Table 1).3 If a publication contains one of the 
terms in its title or abstract it is included in our climate change publication set.

We ran a search through the CSET merged corpus using the terms generated above; publications were selected as 
being related to climate change research if their title or abstract contained at least one keyword. We based these key-
words on other studies that have conducted bibliometric analysis [21]. This search resulted in 947,616 climate change-
related publications, which we refer to as Rclimate . We select RCs that contain at least one of these climate change publica-
tions, which results in 46,703 research clusters.

For each research cluster selected in this initial cluster search, we computed the percentage of papers that are con-
tained in Rclimate  out of the total number of papers in the RC. This allows us to sort and filter these resulting RCs based on 
the concentration of climate change-related papers. Our research cluster analysis for climate research includes 413,303 
publications pulled from the 95th percentile of climate focused literature in our dataset which linked to 2,351 research 
clusters that have five percent or more Rclimate publications [33].

Our final filtering was through an identification of clusters with high percentages of AI-related publications. We use the 
AI percentage from the Map of Science, which identifies the concentration of AI-related publications in a given cluster. 
AI relatedness in English language publications were classified using a model trained on arXiv publications [14], and 

Fig. 1   Data Collection Pipeline using CSET’s Merged Corpus and Map of Science

Table 1   Regular expression search terms used to generate Rclimate

English Chinese SQL

climate change,” “climate changes,” “cli-
matic change,” and “climatic changes.”

气候变化, 气候变迁 REGEXP_CONTAINS(str, r"(?i)((\bclimat.* change.*\b)|(气候变
化)|(气候变迁))"))

global warming 全球暖化,
全球升温, 全球气候变暖

REGEXP_CONTAINS(str, r"(?i)((\bglobal warming\b)|(全球暖化)|(
全球升温)|(全球气候变暖)")

carbon emissions 碳排放 REGEXP_CONTAINS(str, r"(?i)((\bcarbon emission.*\b)|(碳排放))")
low carbon 低碳 REGEXP_CONTAINS(str, r"(?i)((\blow carbon\b)|(低碳))")

2  The data for this study was extracted on April 21, 2022. The latest version of the full database is available at https://​scien​cemap.​eto.​tech/?​
mode=​map.
3  Most non-English language publications translate the abstract into English so this search will include a range of non-English language 
publications. The most frequent exception to this is Chinese-language publications which is why we also include Chinese-language search 
terms.
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Chinese-language publications were classified using a regular expression query [10]. Thus, similarly to how we filter for 
climate change-related RCs, we can filter for AI-related RCs.

This allowed us to sort our dataset both by climate and AI relevance. We did this by looking at the clusters in both the 
95th percentile of climate research and the 95th percentile of AI research. By selecting research clusters that have both 
95% or more concentrations of climate change related publications and AI-related publications we identify 111 research 
clusters to analyze from the starting set of 2,351 climate change clusters.

Figure 2 displays the full Map of Science and the two subsets (climate change and climate change and AI) of research 
clusters we identify highlighted within it.

In the synthesis section we discuss further methods that were used to analyze and synthesize the dataset described 
above. This includes extracting 67 clusters that have either China, or the U.S. listed as the top country and have on average 
more than 2 citations per paper to filter for clusters with community engagement, and an examination of the leading AI 
and climate change tasks and methods by cluster at the individual publication level as described in Sects. 3.2 and 3.3.

3 � Synthesis

3.1 � Characterizing the climate change and AI research landscape

In order to contextualize the landscape of climate change and AI research, we compare the general research fields and 
countries of publication for each research cluster set. Each research cluster is assigned a broad discipline from the follow-
ing list: Biology, Chemistry, Computer Science, Earth Science, Engineering, Humanities, Materials Science, Mathematics, 
Medicine, Physics, and Social Science. This discipline assignment represents the majority of member papers in a given 
research cluster and does not indicate that every member paper falls unambiguously under this area. Figure 3 displays 
the percentages of climate change related research clusters by their general discipline (displaying discipline areas that 
have at least a 1% share of publications).

Research clusters with 5% or more
climate change publications

Research clusters with 5% or more
climate change and AI publications

Chemistry Computer Science

Earth Science Engineering Humanities

Mathematics Materials Science Medicine

Physics Social Science

Biology

2,351 research clusters 111 research clusters

Fig. 2   Climate Change and Climate Change AI Research Clusters Highlighted in the Map of Science

Fig. 3   Comparison of Climate and Climate + AI Research Clusters by Discipline
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The climate research cluster set is comprised of 50% earth science publications and 43% social science publications, 
and includes materials science, engineering and biology publications. In contrast, the climate and AI dataset is comprised 
of 54% earth science and 41% social science publications, along with some engineering, computer science and materials 
science publications. While there is not a huge difference in fields between climate research and climate and AI research, 
biology drops off and is replaced by computer science in the second category as a leading field.

Articles at the intersection of climate and AI research include multiple disciplines from both the natural and social 
sciences. While the earth sciences dominate the research clusters identified, this is very closely followed by the social 
sciences. It is somewhat surprising that engineering and computer science do not show up in greater percentages in 
this area, likely because most climate related research is in fact not being done in these fields, but rather the models and 
techniques are being applied by climate researchers in their respective fields. A potential limitation of these categoriza-
tions however is that much of this work is interdisciplinary and may in fact span the natural and social sciences.

3.2 � Leading countries, institutions and funders

Each research publication is assigned country data using the location of the organization that an author is affiliated with. 
This means that if there are multiple authors from different countries, a given publication will have multiple countries 
assigned. For all member publications in a given research cluster, a “top country” categorization is assigned based on 
the country being listed on the most publications in that research cluster. We treat all EU-27 countries as one entity due 
to their high rates of collaboration and research funding allocation. Figure 4 displays the top five leading countries by 
research cluster count.

We find that China produced more research in our climate research clusters and climate and AI research clusters, with 
U.S. authors producing the second highest number of research in both sets. It is perhaps not surprising given China’s role 
in climate change research shown here, and its strong role in AI research [41]. Yet China has a more sizable publication 
output lead in climate research generally than in climate and AI research. The other countries that produce significant 
climate and AI research outputs differ from those that produce more climate research generally. The EU-27, UK, and India 
follow China and the United States in climate research generally, while India, the EU-27, and South Korea follow China 
and the United States in research on climate and AI. It is worth noting that if results were adjusted by factors such as 
population size or other measures of capacity, the analysis would yield different results.

Due to the publication output lead that China and the U.S. hold, we further refine our set of 111 climate change and AI 
research cluster to the 67 clusters that have either China or the U.S. listed as the top country and have on average more 
than 2 citations per paper to filter for clusters with community engagement [33]. This allows us to examine a variety of 
relevant variables including: (1) leading countries of author affiliation; (2) leading research fields; (3) leading author affili-
ations; (4) leading funding organizations; (5) leading industry affiliations; and (6) AI-related tasks and methods; thereby 
facilitating a more granular analysis of the research landscape at the intersection of climate and AI.

In order to identify research institutes with the highest global publication output at the intersection of climate and AI, 
we examine the research institutes that the study authors are associated with.4 The top 10 institutes are listed in Table 2.

Fig. 4   Comparison of Climate and Climate and AI Research Clusters by Top Country

4  Here, we shift our analysis here to the member publications of the research clusters, thus Tables 2–4 are counts of publications as opposed 
to research clusters.
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As China is the leading country by author affiliation as presented above, we see that many research institutes pub-
lishing at the intersection of climate and AI research are based in China. The Chinese Academy of Sciences, the largest 
research institute in China, is by far the dominant research institute where research at the intersection of climate and 
AI is being conducted. Within the Chinese Academy of Sciences (CAS), the leading research institute associated with 
climate change and AI publications in our database is University of the Chinese Academy of Sciences (438 publications), 
followed by the Institute of Geographic Sciences and Natural Resources (277 publications), and the Institute of Remote 
Sensing and Digital Earth (246 publications). Other leading Chinese research institutes include Beijing Normal University, 
Wuhan University, and Tsinghua University.

Within the United States, the University of Maryland, College Park has the largest number of publications in our cli-
mate and AI dataset, followed by the United States Geological Survey, University of Wisconsin-Madison, and the United 
States Forest Service. The two other countries with research institutes that show up in the top ten are the Netherlands 
and Australia.

We examine the observable leading funding organizations associated with climate and AI publications and find that 
China-based funding organizations have supported research that contributed to the largest number of publications, 
including the National Natural Science Foundation of China (4,391 publications) and China’s Ministry of Science and 
Technology (1,938 publications) in the first and second position. In third place is the United States National Science 
Foundation (1,527 publications), followed by the European Commission (998 publications) and the Chinese Academy 
of Sciences (710) which not only conducts but also funds research. The top ten funders are listed in Table 3.

While no private companies appear as leading research institutes or funders, we took a closer look to determine 
which companies are the most associated with climate and AI publications in our database. The top five companies 
that appear in our database in either a funding capacity or research affiliation are Google based in the United States (62 

Table 2   Top 10 publishers of 
research on climate and AI

Organzation Country Number of 
Publica-
tions

Chinese Academy of Sciences China 1359
Beijing Normal University China 228
University of Maryland, College Park USA 191
Wuhan University China 186
Wageningen University & Research Netherlands 174
United States Geological Survey USA 171
Tsinghua University China 152
University of Wisconsin–Madison USA 139
United States Forest Service USA 138
University of New South Wales Australia 135

Table 3   Top 10 funders 
associated with climate and AI 
publications

Organization Country Number of 
publica-
tions

National Natural Science Foundation of China China 4391
Ministry of Science and Technology of the People’s Republic of China China 1938
National Science Foundation (US) USA 1527
European Commission EU 998
Chinese Academy of Sciences China 710
National Aeronautics & Space Administration (NASA) USA 676
Ministry of Education of the People’s Republic of China China 367
Brazilian Federal Agency for Support and Evaluation of Graduate Education Brazil 319
United States Geological Survey USA 307
United States Department of Energy USA 248
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publications), Science Systems and Applications based in the United States (30 publications), State Grid Corporation 
based in China (30 publications),5 IBM based in the United States (22 publications), and Volkswagen Group based in 
Germany (15 publications).

The Chinese Academy of Sciences (CAS) is listed in Table 2 as being associated with the largest number of publica-
tions at the intersection of climate and AI by far. However, CAS is a large organization comprised of multiple research 
institutes distributed throughout the country. As a result, we took a closer look at the specific research institutes within 
CAS to better understand their contributions to research in this area. We found that the University of Chinese Academy 
of Sciences is the source of the highest number of publications, followed by the Institute of Geographic Sciences and 
Natural Resources Research, and the Institute of Remote Sensing and Digital Earth as listed in Table 4.

The names of the CAS institutes give some indication of the type of research where AI is being applied to climate 
research, including in the areas of geographic sciences and remote sensing. More detail is available at the websites 
provided in Table 4.

3.3 � AI tasks and methods used in climate research fields

To better understand exactly how AI is being utilized within climate research, we examined the AI-related tasks and 
methods that are automatically assigned to individual research publications in our database using a named entity 
recognition model trained on tasks and methods as developed in [59]. Each task and method label falls under several 
broad areas, such as “natural language processing” or “causal inference.” For our analysis, we aggregated the tasks and 
methods that appeared in member publications of our 67 research clusters of interest. For each RC, we looked at the top 
five most frequent tasks and methods from the research clusters’ member publications and represented them in nine 
distinct categorizations from the “Papers with Code” taxonomy: causal inference, computer vision, graphs, methodology, 
natural language processing, neural networks, reinforcement learning, robots, and time series [40].

Next, we manually verified nine climate-related categorization labels based on the occurrence of keywords in the 
research cluster metadata: climate impacts, climate modeling, emission trends, energy efficiency, energy technology, 
energy trends, land use change, public perception, and transportation, based in part on the categories used in [48]. We 
then identified all distinct pairings between the nine AI-related tasks and methods and the nine climate-related catego-
ries. For example, if a research cluster had both climate modeling and neural networks labels, that would be represented 
in Table 5 by a checkmark.6

In Table 5 we see a wide range of AI tasks and methods being applied to the 9 climate research areas that we extract 
from our climate and AI RC dataset. For example, we identify six AI tasks and methods being used in studies of climate 
impacts, including causal interference, computer vision, natural language processing, neural networks, robots and time 

Table 4   Top producers within the Chinese Academy of Sciences of Climate/AI publications

Name of CAS Research Institute Number of Publications Website

University of the Chinese Academy of Sciences 438 https://​engli​sh.​ucas.​ac.​cn
Institute of Geographic Sciences and Natural Resources Research 277 http://​engli​sh.​igsnrr.​cas.​cn
Institute of Remote Sensing and Digital Earth 246 http://​engli​sh.​radi.​cas.​cn
Aerospace Information Research Institute 53 http://​engli​sh.​aircas.​ac.​cn
Northeast Institute of Geography and Agroecology 34 http://​engli​sh.​neiga​ehrb.​cas.​cn
Northwest Institute of Eco-Environment and Resources 28 http://​engli​sh.​nieer.​cas.​cn
Institute of Soil Science 25 http://​engli​sh.​issas.​cas.​cn
Institute of Tibetan Plateau Research 18 http://​engli​sh.​itpcas.​cas.​cn
Nanjing Institute of Geography and Limnology 13 http://​engli​sh.​niglas.​cas.​cn
Institute of Atmospheric Physics 11 http://​engli​sh.​iap.​cas.​cn

5  The State Grid Corporation of China is technically a state-owned as opposed to a purely privately held company.
6  In this way, Table 5 denotes the AI-related tasks and methods that have been applied to climate-related areas but does not represent the 
frequency of these pairings.



Vol:.(1234567890)

Perspective	 Discover Artificial Intelligence            (2024) 4:64  | https://doi.org/10.1007/s44163-024-00170-z

series. Studies involving climate modeling are using at least five AI tasks and methods including computer vision, graphs, 
neural networks, robots and time series.

This analysis also reveals some areas of climate research that are using fewer AI tasks and methods. While energy 
technologies research is using multiple methods (examples include computer vision, AI methodology, natural language 
processing, and reinforcement learning), we see other areas of energy research such as energy trends studies and public 
perception studies using fewer methods. As a result, there appear to be gaps in certain climate research areas where 
AI tasks and methods are not being used as widely and where there may be useful applications. Exploring these gaps 
identified in Table 5 is an area for future research.

4 � Discussion and conclusions

Given the vast potential of AI tasks and methods to revolutionize all aspects of research and analysis, it is not surprising 
that they are being applied to one of today’s most pressing global challenges, addressing climate change. Our study 
contributes to the understanding of how AI is being used in climate related research with three key findings.

First, we find that articles at the intersection of climate and AI research include multiple disciplines from both the 
natural and social sciences. While the earth sciences dominate the research clusters identified, this is very closely fol-
lowed by the social sciences. It is somewhat surprising that engineering and computer science do not show up in greater 
percentages in this area, likely because most climate related research is in fact not being done in these fields. A potential 
limitation of these categorizations however is that much of this work is interdisciplinary and may in fact span the natural 
and social sciences.

Second, we find that Chinese research institutions lead the world in publishing and funding research at the intersec-
tion of climate and AI, followed by the United States. In examining the research institutes that the study authors are 
associated with, we find that just as China is the leading country by author affiliation as presented above, many of leading 
research institutes at the intersection of climate and AI research are based in China. The Chinese Academy of Sciences, 
the largest research institute in China, is by far the dominant research institute where research at the intersection of 
climate and AI is being conducted. We also find that the leading funders associated with climate and AI publications are 
also based in China: The National Natural Science Foundation of China and China’s Ministry of Science and Technology. 
China’s dominance in AI applications has been well documented, and we show that China also leads the world in climate 
released research, as well as at the climate-AI interface. This is also reflected in Chinese government policy; for example, 
the Chinese government has issued explicit guidance on the use of AI in climate research in the “Meteorological Science 
and Technology Development Plan (2021–2035)” issued by the Ministry of Science and Technology and Chinese Academy 
of Sciences in March 2022 [9].

Third, by mapping the specific AI tasks or methods being applied to specific climate research fields, we find gaps and 
identify opportunities to expand the use of AI in climate research. While we believe this is the first study to examine this 
in a systematic way, we acknowledge some deficiencies in our methods, namely that we manually identified subfields in 
climate research using some keyword analysis as well as some subjective judgement, and that our pairing of AI-related 

Table 5   Mapping AI Tasks and Methods within Climate Change Research Subfields

Causal 
Interfer-
ence

Com-
puter 
Vision

Graphs Methodology Natural Lan-
guage Process-
ing

Neural 
Networks

Reinforce-
ment Learn-
ing

Robots Time Series

Climate Impacts ✔ ✔ ✔ ✔ ✔ ✔
Climate Modeling ✔ ✔ ✔ ✔ ✔
Emissions Trends ✔ ✔ ✔
Energy Efficiency ✔ ✔ ✔
Energy Technologies ✔ ✔ ✔ ✔
Energy Trends ✔
Land Use Change ✔ ✔ ✔
Public Perception ✔
Transportation ✔ ✔
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tasks and methods to climate-related research areas represents the occurrence but not the frequency of these pairings. 
However, our findings raise multipole questions that present opportunities for future research and inquiry, including why 
certain tasks and methods are being used in specific fields, and what other fields might learn from applications to date.

Of course, any effort to make broad generalizations about fields as vast and complex as the fields of climate change 
and AI comes with some limitations. There are likely applications of AI to climate research that are not included here 
due to limitations in our original search terms or in the way in which we develop climate subfields in order to map them 
against AI tasks and methods. These are rapidly involving fields of research in which new methods and applications are 
being developed all the time. Furthermore, the field of research at the intersection of AI and climate change is growing 
very rapidly, so any attempt to assess the state of the field could be quickly outdated.

Yet given the tremendous opportunity that emerging AI tools provide in addressing a challenge so vast and multi-
faceted as climate change, the study of their application is no doubt of tremendous academic and practical importance. 
This paper allows for a more globally comprehensive and nuanced analysis of this relationship than past studies and 
consequently provides a tangible contribution to our broader understanding of the use of AI tasks and methods in 
climate change research.

This study also examines the role of specific countries and specific funding organizations in shaping the direction of 
climate and AI research which will be increasingly important to understand. Furthermore, tensions between China and 
the West are already shaping national decisions about investments in AI research and could influence future research 
directions.

Given the very limited time remaining to avoid even more dangerous impacts of climate change globally, the expanded 
use of AI tasks and methods presents the opportunity to transform our ability to understand and address climate change. 
This paper helps to identify opportunities to expand the use of AI tasks and methods in climate related research, and 
the predominance of China and the United States in this area raises important questions about national leadership and 
competitiveness.

Acknowledgements  We would like to thank Igor Mikolic-Torreira, Dewey Murdick, Melissa Flagg and Catherine Aiken for feedback on earlier 
versions of this paper. For research assistance we would like to thank Laura Edwards.

Author contributions  All authors contributed to the study conception and design. All authors contributed to material preparation, data col-
lection and analysis. The first draft of the manuscript was written by Joanna Lewis and all authors commented on previous versions of the 
manuscript. All authors read and approved the final manuscript.

Funding  Partial financial support was received from the Center for Security and Emerging Technology (CSET) at Georgetown University.

Data availability  The data used in this analysis is available on Mendeley Data [Joanna I. Lewis and Autumn Toney, “AI Applications in Climate 
Research Dataset” (Mendeley Data, 2024), https://​doi.​org/​10.​17632/​wjwbw​rn28p.1.

Code availability  Not applicable.

Declarations 

Competing interests  The authors have no competing interests to declare that are relevant to the content of this article.

Open Access   This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which 
permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to 
the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You 
do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party 
material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If 
material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds 
the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​
mmons.​org/​licen​ses/​by-​nc-​nd/4.​0/.

References

	 1.	 Abbot J, Marohasy J. The application of machine learning for evaluating anthropogenic versus natural climate change. GeoResJ. 
2017;14(December):36–46. https://​doi.​org/​10.​1016/j.​grj.​2017.​08.​001.



Vol:.(1234567890)

Perspective	 Discover Artificial Intelligence            (2024) 4:64  | https://doi.org/10.1007/s44163-024-00170-z

	 2.	 Ahmad T, Zhang D, Huang C, Zhang H, Dai N, Song Y, Chen H. Artificial intelligence in sustainable energy industry: status quo, challenges and 
opportunities. J Clean Prod. 2021;289(March): 125834. https://​doi.​org/​10.​1016/j.​jclep​ro.​2021.​125834.

	 3.	 Aiyegbusi O, Yalamova R, Usher J. Carbon pricing in dynamic regulation and changing economic environment—agent based model. Reg Bus 
Stud. 2011;3(1 Suppl.):497–509.

	 4.	 Al-Othman A, Tawalbeh M, Martis R, Dhou S, Orhan M, Qasim M, Olabi AG. Artificial intelligence and numerical models in hybrid renewable 
energy systems with fuel cells: advances and prospects. Energy Convers Manage. 2022;253(February): 115154. https://​doi.​org/​10.​1016/j.​encon​
man.​2021.​115154.

	 5.	 Anderson GJ, Lucas DD. Machine learning predictions of a multiresolution climate model ensemble. Geophys Res Lett. 2018;45(9):4273–80. 
https://​doi.​org/​10.​1029/​2018G​L0770​49.

	 6.	 Carozza DA, Boudreault M. A global flood risk modeling framework built with climate models and machine learning. J Adv Model Earth Syst. 
2021. https://​doi.​org/​10.​1029/​2020M​S0022​21.

	 7.	 Chen C, Yuhan Hu, Karuppiah M, Kumar PM. Artificial intelligence on economic evaluation of energy efficiency and renewable energy tech-
nologies. Sustain Energy Technol Assess. 2021;47(October): 101358. https://​doi.​org/​10.​1016/j.​seta.​2021.​101358.

	 8.	 Chen L, Chen Z, Zhang Y, Liu Y, Osman AI, Farghali M, Hua J, et al. Artificial intelligence-based solutions for climate change: a review. Environ 
Chem Lett. 2023;21(5):2525–57. https://​doi.​org/​10.​1007/​s10311-​023-​01617-y.

	 9.	 China Meteorological Administration, and Chinese Academy of Sciences. 2022. China meteorological science and technology development 
plan (2021–2035) 中国气象科技发展规划 (2021—2035年). 2022. https://​www.​gov.​cn/​xinwen/​2022-​03/​03/​conte​nt_​56767​14.​htm.

	10.	 Daniel C. 2022. Counting AI Research: exploring ai research output in english- and chinese-language sources. https://​cset.​georg​etown.​edu/​
publi​cation/​count​ing-​ai-​resea​rch/.

	11.	 Cowls J, Tsamados A, Taddeo M, Floridi L. The AI gambit: leveraging artificial intelligence to combat climate change—opportunities, challenges, 
and recommendations. AI Soc. 2023;38(1):283–307. https://​doi.​org/​10.​1007/​s00146-​021-​01294-x.

	12.	 Crane-Droesch A. Machine learning methods for crop yield prediction and climate change impact assessment in agriculture. Environ Res Lett. 
2018;13(11):114003. https://​doi.​org/​10.​1088/​1748-​9326/​aae159.

	13.	 Ding C, Ke J, Levine M, Zhou N. Potential of artificial intelligence in reducing energy and carbon emissions of commercial buildings at scale. 
Nat Commun. 2024;15(1):5916. https://​doi.​org/​10.​1038/​s41467-​024-​50088-4.

	14.	 Dunham J, Melot J, Murdick D. 2020. Identifying the development and application of artificial intelligence in scientific text. arXiv. https://​doi.​
org/​10.​48550/​arXiv.​2002.​07143.

	15.	 Kumar EPG, Lydia M. 2021. machine learning algorithms for modelling agro-climatic indices: a review. In smart computing techniques and 
applications, edited by Suresh Chandra Satapathy, Vikrant Bhateja, Margarita N. Favorskaya, and T. Adilakshmi, 15–23. Smart Innovation, 
Systems and Technologies. Singapore: Springer. https://​doi.​org/​10.​1007/​978-​981-​16-​1502-3_3.

	16.	 Soheil F, Srinivasan R. 2019. Climate change impacts on campus buildings energy use: an ai-based scenario analysis. In Proceedings of the 1st 
ACM International Workshop on Urban Building Energy Sensing, Controls, Big Data Analysis, and Visualization, 112–19. UrbSys’19. New York, 
NY, USA: Association for Computing Machinery. https://​doi.​org/​10.​1145/​33634​59.​33635​40.

	17.	 Feng Y, Cui N, Zhang Q, Zhao L, Gong D. Comparison of artificial intelligence and empirical models for estimation of daily diffuse solar radiation 
in north China plain. Int J Hydr Energy. 2017;42(21):14418–28. https://​doi.​org/​10.​1016/j.​ijhyd​ene.​2017.​04.​084.

	18.	 Fu T, Wang C. A hybrid wind speed forecasting method and wind energy resource analysis based on a swarm intelligence optimization algo-
rithm and an artificial intelligence model. Sustainability. 2018;10(11):3913. https://​doi.​org/​10.​3390/​su101​13913.

	19.	 Gu GH, Noh J, Kim I, Jung Y. Machine learning for renewable energy materials. J Mater Chem A. 2019;7(29):17096–117. https://​doi.​org/​10.​
1039/​C9TA0​2356A.

	20.	 You H, Gopal A, Ouyang L, Key A. 2021. Estimation of corporate greenhouse gas emissions via machine learning. arXiv:​2109.​04318 [Cs, Stat], 
September. http://​arxiv.​org/​abs/​2109.​04318.

	21.	 Haunschild R, Bornmann L, Marx W. Climate change research in view of bibliometrics. PLoS ONE. 2016;11(7): e0160393. https://​doi.​org/​10.​
1371/​journ​al.​pone.​01603​93.

	22.	 Huntingford C, Jeffers ES, Bonsall MB, Christensen HM, Lees T, Yang H. Machine learning and artificial intelligence to aid climate change research 
and preparedness. Environ Res Lett. 2019;14(12): 124007. https://​doi.​org/​10.​1088/​1748-​9326/​ab4e55.

	23.	 Jha SK, Bilalovic J, Jha A, Patel N, Zhang H. Renewable energy: present research and future scope of artificial intelligence. Renew Sustain Energy 
Rev. 2017;77(September):297–317. https://​doi.​org/​10.​1016/j.​rser.​2017.​04.​018.

	24.	 John N, Wesseling JH, Worrell E, Hekkert M. How key-enabling technologies’ regimes influence sociotechnical transitions: the impact of artificial 
intelligence on decarbonization in the steel industry. J Clean Prod. 2022;370(October): 133624. https://​doi.​org/​10.​1016/j.​jclep​ro.​2022.​133624.

	25.	 Jursa R, Rohrig K. Short-term wind power forecasting using evolutionary algorithms for the automated specification of artificial intelligence 
models. Int J Forecast Energy Forecast. 2008;24(4):694–709. https://​doi.​org/​10.​1016/j.​ijfor​ecast.​2008.​08.​007.

	26.	 Kadow C, Hall DM, Ulbrich U. Artificial intelligence reconstructs missing climate information. Nat Geosci. 2020;13(6):408–13. https://​doi.​org/​
10.​1038/​s41561-​020-​0582-5.

	27.	 Karim MA, Currie J, Lie T-T. A distributed machine learning approach for the secondary voltage control of an islanded micro-grid. 2016 IEEE 
Innov Smart Grid Technol Asia. 2016. https://​doi.​org/​10.​1109/​ISGT-​Asia.​2016.​77964​54.

	28.	 Kashinath K, Mustafa M, Albert A, Wu J-L, Jiang C, Esmaeilzadeh S, Azizzadenesheli K, et al. Physics-informed machine learning: case studies 
for weather and climate modelling. Philos Trans Royal Soc A. 2021;379(2194):20200093. https://​doi.​org/​10.​1098/​rsta.​2020.​0093.

	29.	 Katterbauer K, Sofi AA, Marsala A, Yousif A. An innovative artificial intelligence framework for reducing carbon footprint in reservoir manage-
ment. OnePetro. 2021. https://​doi.​org/​10.​2118/​205856-​MS.

	30.	 Khosravi A, Nunes RO, Assad MEH, Machado L. Comparison of artificial intelligence methods in estimation of daily global solar radiation. J 
Clean Prod. 2018;194(September):342–58. https://​doi.​org/​10.​1016/j.​jclep​ro.​2018.​05.​147.

	31.	 Kuo P-H, Huang C-J. A green energy application in energy management systems by an artificial intelligence-based solar radiation forecasting 
model. Energies. 2018;11(4):819. https://​doi.​org/​10.​3390/​en110​40819.



Vol.:(0123456789)

Discover Artificial Intelligence            (2024) 4:64  | https://doi.org/10.1007/s44163-024-00170-z	 Perspective

	32.	 Levy O, Shahar S. Artificial intelligence for climate change biology: from data collection to predictions. Integr Compe Biol. 2024. https://​doi.​
org/​10.​1093/​icb/​icae1​27.

	33.	 Lewis JI, Toney A. AI applications in climate research dataset. Mendeley Data. 2024. https://​doi.​org/​10.​17632/​wjwbw​rn28p.1.
	34.	 Lobo S, Amin I, Agarwal M, Gurnani R, Priya RL. Analyzing the impact of deforestation and population on carbon footprint in indian cities using 

statistical and deep learning techniques. Advances in intelligent systems and computing. In: Sivakumar Reddy V, Kamakshi Prasad V, Wang J, 
Reddy KTV, editors. Soft computing and signal processing. Singapore: Springer; 2021. p. 89–99. https://​doi.​org/​10.​1007/​978-​981-​33-​6912-2_9.

	35.	 Lu H, Ma X, Huang K, Azimi M. Carbon trading volume and price forecasting in China using multiple machine learning models. J Clean Prod. 
2020;249(March): 119386. https://​doi.​org/​10.​1016/j.​jclep​ro.​2019.​119386.

	36.	 Martin TCM, Rocha HR, Perez GMP. Fine scale surface climate in complex terrain using machine learning. Int J Climatol. 2021;41(1):233–50. 
https://​doi.​org/​10.​1002/​joc.​6617.

	37.	 Mazzeo D, Herdem MS, Matera N, Bonini M, Wen JZ, Nathwani J, Oliveti G. Artificial intelligence application for the performance prediction of 
a clean energy community. Energy. 2021;232(October): 120999. https://​doi.​org/​10.​1016/j.​energy.​2021.​120999.

	38.	 Mehdizadeh S, Behmanesh J, Khalili K. Comparison of artificial intelligence methods and empirical equations to estimate daily solar radiation. 
J Atmos Solar Terr Phys. 2016;146(August):215–27. https://​doi.​org/​10.​1016/j.​jastp.​2016.​06.​006.

	39.	 Meng H, Wang W. Definition method for carbon footprint of iron and steel energy supply Chain based on relational dispersed degree. J Intell 
Fuzzy Syst. 2020;38(6):7407–16. https://​doi.​org/​10.​3233/​JIFS-​179814.

	40.	 Meta AI Research. 2023. Papers with code—the methods corpus. 2023. https://​paper​swith​code.​com/​metho​ds.
	41.	 Min C, Zhao Y, Yi B, Ding Y, Wagner CS. Has China caught up to the US in AI research? An exploration of mimetic isomorphism as a model for 

late industrializers. arXiv. 2023. https://​doi.​org/​10.​48550/​arXiv.​2307.​10198.
	42.	 Mishra M, Panigrahi RR, Rout PK. A combined mathematical morphology and extreme learning machine techniques based approach to 

micro-grid protection. Ain Shams Eng J. 2019;10(2):307–18. https://​doi.​org/​10.​1016/j.​asej.​2019.​03.​011.
	43.	 Mosavi A, Ozturk P, Chau K-W. Flood prediction using machine learning models: literature review. Water. 2018;10(11):1536. https://​doi.​org/​10.​

3390/​w1011​1536.
	44.	 Nichol JJ, Peterson MG, Peterson KJ, Matthew Fricke G, Moses ME. Machine learning feature analysis illuminates disparity between E3SM 

climate models and observed climate change. J Comput Appl Math. 2021;395:113451. https://​doi.​org/​10.​1016/j.​cam.​2021.​113451.
	45.	 Ojo M. The future of UK Carbon pricing: artificial intelligence and the emissions trading system. MPRA paper. University Library of Munich, 

Germany. 2019. https://​econp​apers.​repec.​org/​paper/​pramp​rapa/​94887.​htm.
	46.	 Park SJ, Lee DK. Prediction of coastal flooding risk under climate change impacts in South Korea using machine learning algorithms. Enviro 

Res Lett. 2020;15(9):094052. https://​doi.​org/​10.​1088/​1748-​9326/​aba5b3.
	47.	 Ploszaj-Mazurek M, Rynska E, Grochulska-Salak M. Methods to optimize carbon footprint of buildings in regenerative architectural design 

with the use of machine learning, convolutional neural network, and parametric design. Energies. 2020;13(20):5289. https://​doi.​org/​10.​3390/​
en132​05289.

	48.	 Rolnick D, Donti PL, Kaack LH, Kochanski K, Lacoste A, Sankaran K, Ross AS, et al. 2019. Tackling climate change with machine learning. arXiv:​
1906.​05433 [Cs, Stat], November. http://​arxiv.​org/​abs/​1906.​05433.

	49.	 Shaamala A, Yigitcanlar T, Nili A, Nyandega D. Algorithmic green infrastructure optimization: review of artificial intelligence driven approaches 
for tackling climate change. Sustain Cities Soc. 2024;101(February): 105182. https://​doi.​org/​10.​1016/j.​scs.​2024.​105182.

	50.	 Shin J-Y, Kim KR, Ha J-C. Seasonal forecasting of daily mean air temperatures using a coupled global climate model and machine learning 
algorithm for field-scale agricultural management. Agric For Meteorol. 2020;281:107858. https://​doi.​org/​10.​1016/j.​agrfo​rmet.​2019.​107858.

	51.	 Thilakarathna PSM, Seo S, Kristombu Baduge KS, Lee H, Mendis P, Foliente G. Embodied carbon analysis and benchmarking emissions of high 
and ultra-high strength concrete using machine learning algorithms. J Clean Prod. 2020;262(July): 121281. https://​doi.​org/​10.​1016/j.​jclep​ro.​
2020.​121281.

	52.	 Verendel V. Tracking artificial intelligence in climate inventions with patent data. Nat Clim Chang. 2023;13(1):40–7. https://​doi.​org/​10.​1038/​
s41558-​022-​01536-w.

	53.	 Vinuesa R, Azizpour H, Leite I, Balaam M, Dignum V, Domisch S, Felländer A, Langhans SD, Tegmark M, Nerini FF. The role of artificial intelligence 
in achieving the sustainable development goals. Nat Commun. 2020;11(1):233. https://​doi.​org/​10.​1038/​s41467-​019-​14108-y.

	54.	 Watson-Parris D. Machine learning for weather and climate are worlds apart. Philos Trans Royal Soc A. 2021;379(2194):20200098. https://​doi.​
org/​10.​1098/​rsta.​2020.​0098.

	55.	 Watt-Meyer O, Brenowitz ND, Clark SK, Henn B, Kwa A, Jeremy McGibbon W, Perkins A, Bretherton CS. Correcting weather and climate models 
by machine learning nudged historical simulations. Geophys Res Lett. 2021. https://​doi.​org/​10.​1029/​2021G​L0925​55.

	56.	 Wei S, Chongchong Z, Cuiping S. Carbon pricing prediction based on wavelet transform and K-ELM optimized by bat optimization algorithm 
in China ETS: the case of Shanghai and Hubei carbon markets. Carbon Manage. 2018;9(6):605–17. https://​doi.​org/​10.​1080/​17583​004.​2018.​
15220​95.

	57.	 World Economic Forum. 2018. Harnessing artificial intelligence for the earth. fourth industrial revolution for the earth series. http://​www3.​
wefor​um.​org/​docs/​Harne​ssing_​Artif​icial_​Intel​ligen​ce_​for_​the_​Earth_​report_​2018.​pdf.

	58.	 Yao W. Analysis on the Application of the Artificial Intelligence Neural Network on the New Energy Micro Grid. In: Yao W, editor. Proceedings 
of the 2017 4th international conference on machinery, materials and computer (MACMC 2017). Xi’an: Atlantis Press; 2018. https://​doi.​org/​
10.​2991/​macmc-​17.​2018.​144.

	59.	 Yousuf RB, Biswas S, Kaushal KK, Dunham J, Gelles R, Muthiah S, Self N, Butler P, Ramakrishnan N. Lessons from deep learning applied to 
scholarly information extraction: what works, what doesn’t, and future directions. arXiv. 2022. https://​doi.​org/​10.​48550/​arXiv.​2207.​04029.

	60.	 Yu H, Wen X, Li Bo, Yang Z, Min Wu, Ma Y. Uncertainty analysis of artificial intelligence modeling daily reference evapotranspiration in the 
Northwest end of China. Comput Electron Agric. 2020;176(September): 105653. https://​doi.​org/​10.​1016/j.​compag.​2020.​105653.



Vol:.(1234567890)

Perspective	 Discover Artificial Intelligence            (2024) 4:64  | https://doi.org/10.1007/s44163-024-00170-z

	61.	 Zabihi O, Siamaki M, Gheibi M, Akrami M, Hajiaghaei-Keshteli M. A smart sustainable system for flood damage management with the applica-
tion of artificial intelligence and multi-criteria decision-making computations. Int J Dis Risk ReducT. 2023;84(January): 103470. https://​doi.​
org/​10.​1016/j.​ijdrr.​2022.​103470.

	62.	 Zennaro F, Furlan E, Simeoni C, Torresan S, Aslan S, Critto A, Marcomini A. Exploring machine learning potential for climate change risk assess-
ment. Earth Sci Rev. 2021;220(September): 103752. https://​doi.​org/​10.​1016/j.​earsc​irev.​2021.​103752.

	63.	 Zhao X, Wang C, Jinxia Su, Wang J. Research and application based on the swarm intelligence algorithm and artificial intelligence for 
wind farm decision system. Renew Energy. 2019;134(April):681–97. https://​doi.​org/​10.​1016/j.​renene.​2018.​11.​061.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.



SDi@JPUTM
SELECTIVE DISSEMINATION OF INFORMATION

M
or

e
in

fo

ARTICLES FOR UTM SENATE MEMBERS

“Decoding the Climate Crisis: How AI is Fighting Climate Change”

30th JULY 2025
SOURCE: PERPUSTAKAAN UTM

TITLE SOURCE

l i b r a r y . u t m . my

2) Article Context and 
Technological Integration AI’s 

Role in Climate Change 
Research 
(2025)

LatIA

(Article From : AG Editor)



Contexto del Artículo e Integración Tecnológica: El Papel de la IA en la Investigación 
sobre el Cambio Climático

LatIA. 2025; 3:11
doi: 10.62486/latia202585
ISSN: 3046-403X

REVIEW

Article Context and Technological Integration: AI’s Role in Climate Change Research

Fredrick Kayusi1  , Srinivas Kasulla2
 , S J Malik2

 , Petros Chavula3
  

ABSTRACT

This article explores the transformative role of artificial intelligence and machine learning in tackling climate 
change. It highlights how advanced computational techniques enhance our understanding and response 
to environmental shifts. Machine learning algorithms process vast climate datasets, revealing patterns 
that traditional methods might overlook. Deep learning neural networks, particularly effective in climate 
research, analyze satellite imagery, climate sensor data, and environmental indicators with unprecedented 
accuracy. Key applications include predictive modeling of climate change impacts. Using convolutional and 
recurrent neural networks, researchers generate high-resolution projections of temperature rises, sea-level 
changes, and extreme weather events with remarkable precision. AI also plays a vital role in data integration, 
synthesizing satellite observations, ground-based measurements, and historical records to create more 
reliable climate models. Additionally, deep learning algorithms enable real-time environmental monitoring, 
tracking changes like deforestation, ice cap melting, and ecosystem shifts. The article also highlights AI-
powered optimization models in mitigation efforts. These models enhance carbon reduction strategies, 
optimize renewable energy use, and support sustainable urban planning. By leveraging machine learning, the 
research demonstrates how AI-driven approaches offer data-backed solutions for climate change mitigation 
and adaptation. These innovations provide practical strategies to address global environmental challenges 
effectively.

Keywords: Advanced AI; Machine Learning; Deep Learning Techniques; Climate Change.

RESUMEN 

Este artículo explora el papel transformador de la inteligencia artificial y el aprendizaje automático en la 
lucha contra el cambio climático. Destaca cómo las técnicas computacionales avanzadas mejoran nuestra 
comprensión y respuesta a los cambios ambientales. Los algoritmos de aprendizaje automático procesan 
grandes conjuntos de datos climáticos, revelando patrones que los métodos tradicionales podrían pasar por 
alto. Las redes neuronales de aprendizaje profundo, especialmente eficaces en la investigación climática, 
analizan imágenes satelitales, datos de sensores climáticos e indicadores ambientales con una precisión sin 
precedentes. Las aplicaciones clave incluyen la modelización predictiva de los impactos del cambio climático. 
Mediante redes neuronales convolucionales y recurrentes, los investigadores generan proyecciones de alta 
resolución sobre el aumento de temperaturas, el nivel del mar y la probabilidad de eventos climáticos 
extremos con notable precisión. La IA también desempeña un papel fundamental en la integración de datos, 
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combinando observaciones satelitales, mediciones terrestres y registros históricos para crear modelos 
climáticos más fiables. Además, los algoritmos de aprendizaje profundo permiten el monitoreo ambiental 
en tiempo real, rastreando cambios como la deforestación, el derretimiento de los casquetes polares y las 
transformaciones de los ecosistemas. El artículo también destaca los modelos de optimización impulsados 
por IA en los esfuerzos de mitigación. Estos modelos mejoran las estrategias de reducción de carbono, 
optimizan el uso de energías renovables y apoyan la planificación urbana sostenible. A través del aprendizaje 
automático, la investigación demuestra cómo los enfoques basados en IA ofrecen soluciones respaldadas 
por datos para la mitigación y adaptación al cambio climático, proporcionando estrategias prácticas para 
abordar los desafíos ambientales globales de manera efectiva.

Palabras clave: IA Avanzada; Aprendizaje Automático; Técnicas de Aprendizaje Profundo; Cambio Climático.

INTRODUCTION
The article on advanced AI, machine learning, and deep learning techniques for climate change studies 

represents a pivotal intersection between cutting-edge computational technologies and environmental science.
(1,2) Building upon traditional climate research methodologies, this approach introduces a transformative 
paradigm that leverages artificial intelligence’s unprecedented analytical capabilities to address global 
environmental challenges.

Machine learning and deep learning algorithms offer researchers powerful tools to transcend conventional 
data analysis limitations.(3) By processing immense volumes of complex, multidimensional environmental data, 
these computational techniques can reveal intricate patterns and correlations that human analysts might 
overlook. The chapter emphasizes how neural networks can synthesize information from diverse sources—
satellite imagery, ground-based sensors, historical climate records, and real-time environmental monitoring 
systems—creating more comprehensive and nuanced climate models. The technological framework presented 
demonstrates remarkable potential across multiple research domains.(4) Predictive modelling stands out as 
a critical application, with advanced AI algorithms generating high-resolution climate projections that 
significantly improve our understanding of potential future scenarios.(5,6) These models can forecast temperature 
variations, sea-level changes, and extreme weather event probabilities with unprecedented accuracy, providing 
policymakers and researchers with critical insights for strategic planning and mitigation efforts.

Moreover, the research highlights AI’s role in environmental monitoring and strategy development. Deep 
learning algorithms enable real-time tracking of complex environmental changes, including deforestation, 
ecosystem transformations, and glacial melting. By converting massive datasets into actionable intelligence, 
these computational techniques bridge the gap between raw information and strategic environmental 
management.

The chapter also explores optimization models powered by machine learning, which can design more effective 
carbon reduction strategies and support sustainable urban planning.(2) These AI-driven approaches represent 
a sophisticated method of developing targeted interventions that balance environmental preservation with 
economic and social considerations.

Ultimately, this research underscores the critical importance of interdisciplinary collaboration. By integrating 
advanced computational techniques with climate science, researchers can develop more nuanced, data-driven 
approaches to understanding and mitigating global environmental challenges. The AI-enhanced methodologies 
presented offer a beacon of technological hope in addressing one of the most complex global issues of our 
time. As climate change continues to evolve as a critical global concern, the computational techniques outlined 
in this chapter demonstrate the transformative potential of artificial intelligence in developing innovative, 
responsive, and sophisticated environmental research and intervention strategies.

Literature review methods of inclusion and exclusion
Inclusion Criteria

The literature selection for this research follows a structured inclusion process to ensure relevance and 
quality. The following criteria were applied:

1.	 Relevance to AI and Climate Change: articles that specifically discuss artificial intelligence, 
machine learning, or deep learning applications in climate change research.

2.	 Peer-Reviewed and Scholarly Sources: only peer-reviewed journal articles, conference 
proceedings, and authoritative institutional reports are considered.

3.	 Publication Date: literature published within the last ten years (2014-2024) to ensure up-to-date 
technological and scientific advancements.

4.	 English Language: research articles and reports written in English to maintain consistency in 
interpretation and analysis.
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5.	 Technological Integration: studies highlighting AI-driven models, algorithms, or computational 
techniques for climate prediction, environmental monitoring, and mitigation strategies.

6.	 Empirical Studies: research that includes case studies, experiments, or real-world applications of 
AI in climate change.

Exclusion Criteria
To maintain a focused scope, the following exclusion criteria were applied:

1.	Non-AI-Based Climate Research: articles that discuss climate change without integrating AI 
methodologies.

2.	Non-Peer-Reviewed Sources: blog posts, opinion pieces, and non-scientific sources are excluded.
3.	Outdated Studies: research published before 2014 unless foundational to AI’s role in climate 

science.
4.	Irrelevant Technological Focus: studies focusing on general environmental science without a 

technological component.
5.	Duplicate Studies: repeated studies with no new findings or methodological advancements.

Boolean Operators for Literature Search
To refine the literature search, Boolean operators were used in academic databases (Google Scholar, IEEE 

Xplore, Scopus, and Web of Science). The search queries included:
•	 (“Artificial Intelligence” OR “Machine Learning” OR “Deep Learning”) AND (“Climate Change” OR 

“Global Warming”)
•	 (“AI in Climate Science” OR “AI for Environmental Monitoring”) AND (“Prediction” OR “Mitigation”)
•	 (“Neural Networks” OR “Algorithmic Models”) AND (“Sustainability” OR “Carbon Emission 

Reduction”)

These Boolean strategies ensure comprehensive retrieval of relevant and high-quality research articles 
aligning with the study’s objectives.

Table 1. Inclusion and Exclusion Criteria
Criteria Inclusion (✓) Exclusion (✗) Count
AI and Climate Change Relevance ✓ ✗ 150
Peer-Reviewed Sources ✓ ✗ 120
Publication Date (2014-2024) ✓ ✗ 100
English Language ✓ ✗ 130
Technological Integration ✓ ✗ 110
Empirical Studies ✓ ✗ 90
Non-AI-Based Climate Research ✗ ✓ 50
Non-Peer-Reviewed Sources ✗ ✓ 40
Outdated Studies (Pre-2014) ✗ ✓ 60
Irrelevant Technological Focus ✗ ✓ 30
Duplicate Studies ✗ ✓ 20

DEVELOPMENT 
Advancing Climate Modeling through Artificial Intelligence: A Technological Breakthrough

The exponential growth of information sources has unveiled unprecedented opportunities to leverage 
emerging technologies, particularly advanced artificial intelligence, in enhancing complex systems like global 
climate models. While current global climate models represent our most sophisticated tools for projecting 
climate change across regional and global scales, they remain fundamentally constrained by computational 
limitations in modeling turbulent atmospheric phenomena.(7,8)

Traditional climate models struggle with intricate atmospheric dynamics, especially in representing cloud 
formations and moist air convection. These models rely on subgrid parameterizations that function more like 
adaptive tuning mechanisms rather than providing precise representations of cloud motions—critical drivers 
of global climate variability. This computational constraint has long hindered our ability to generate highly 
accurate climate predictions.(9)

Artificial intelligence emerges as a transformative solution to these computational challenges. The 
convergence of rapidly expanding observational datasets and advanced AI technologies positions machine 
learning as a potential game-changer in climate science.(8) AI technologies promise to revolutionize global 
climate models by enhancing resolution, improving grid-scale interactions, and more accurately representing 
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complex atmospheric processes.
The potential improvements span multiple critical atmospheric domains, including:

•	 Dry dynamical kernels
•	 Convective forcing mechanisms
•	 Grid-scale condensation
•	 Radiation interactions
•	 Cumulonimbus cloud formations
•	 Boundary layer dynamics
•	 Cloud microphysics
•	 Subgrid turbulence modeling

Current research demonstrates diverse machine learning approaches, from linear regression models to 
sophisticated neural network architectures. Support vector machines and advanced neural networks have 
shown particular promise in prediction, classification, pattern recognition, and numerical optimization of 
climate models.(10) This technological integration represents more than incremental improvement—it signals a 
paradigm shift in our approach to understanding global climate dynamics. Machine learning and deep learning 
technologies offer unprecedented capabilities to process and interpret massive, complex observational datasets, 
potentially transforming our predictive capabilities. By bridging computational limitations and providing more 
nuanced representations of atmospheric interactions, AI technologies hold the potential to significantly enhance 
our understanding of climate change, offering more precise, comprehensive models that can guide critical 
environmental policy and mitigation strategies.(11)

Deep Learning Paradigms in Climate Change Research: A Comprehensive Exploration
In the rapidly evolving landscape of climate science, deep learning has emerged as a transformative 

technological approach, offering unprecedented capabilities for modeling and understanding Earth’s complex 
environmental systems. This chapter, aligned with the book’s focus on “Advanced AI, Machine Learning and 
Deep Learning Techniques for Climate Change Studies,” provides an extensive examination of deep learning’s 
revolutionary potential in climate research(12), (figure 1).

Figure 1. Depicting the role of AI(7,13,14)

Deep learning technologies distinguish themselves from traditional machine learning models through their 
sophisticated architectural design. Unlike conventional approaches that require manual feature extraction, 
deep learning models can autonomously learn optimal representations of spatiotemporal data, enabling more 
nuanced and comprehensive climate predictions. These models characteristically employ multiple hidden 
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layers, allowing for increasingly complex and abstract representations of environmental phenomena.(15)

The technological advancement is particularly significant in climate science, where understanding 
intricate interactions between global systems demands computational approaches that can process massive, 
multidimensional datasets. Deep learning algorithms demonstrate remarkable capabilities in various critical 
domains.

RESULTS AND DISCUSSION
Climate and Weather Pattern Analysis

Deep learning algorithms have revolutionized our approach to understanding and predicting climate and 
weather patterns by processing vast historical and real-time meteorological datasets. These advanced neural 
networks can identify subtle, complex relationships within atmospheric data that traditional statistical models 
often overlook.(16) By integrating multiple data sources and employing sophisticated pattern recognition 
techniques, these models enable more accurate predictions of weather phenomena, including extreme events 
like hurricanes, heat waves, and prolonged drought conditions. The technology’s ability to analyze intricate 
temperature, precipitation, and atmospheric interactions allows researchers to develop more comprehensive 
long-term climate trend forecasting and seasonal prediction models, providing critical insights into global 
environmental dynamics.(17)

Remote Sensing Data Interpretation
Convolutional neural networks have transformed remote sensing data analysis by offering unprecedented 

capabilities in processing satellite and aerial imagery. These advanced AI systems can rapidly classify and 
segment geographical features, detecting minute environmental changes such as deforestation, ice melt, urban 
expansion, and ecosystem transformations.(18) By automating the interpretation of high-resolution imagery, 
these technologies enable researchers to monitor global environmental changes in real-time with extraordinary 
accuracy. The ability to process massive geospatial datasets quickly allows for more responsive and dynamic 
environmental monitoring, supporting critical research into climate change impacts and ecological shifts across 
different geographical regions.

Cybersecurity Applications in Environmental Monitoring
As environmental monitoring becomes increasingly dependent on complex digital infrastructure, AI-

powered cybersecurity systems have emerged as crucial guardians of critical climate research networks. 
These advanced systems employ sophisticated algorithms to detect potential cyber threats, analyze network 
traffic patterns, and identify unusual activities targeting environmental data systems.(19) By creating resilient 
communication networks and implementing intelligent threat detection mechanisms, these technologies 
protect sensitive climate research data from potential breaches or malicious manipulation. The integration of 
cybersecurity measures with environmental monitoring platforms ensures the integrity and continuity of global 
climate research efforts.

Complex System Modeling and Prediction
Advanced neural network architectures have opened new frontiers in modeling and predicting complex 

environmental systems. These computational approaches enable researchers to simulate intricate interactions 
between various environmental components, integrating diverse data sources to create holistic predictive 
frameworks. By developing multi-layered models capable of understanding non-linear environmental dynamics,(20) 
scientists can now generate more precise long-term climate change scenarios. These sophisticated simulation 
techniques support the development of more targeted and effective climate intervention and mitigation 
strategies, providing policymakers and researchers with nuanced insights into potential future environmental 
transformations.

Each of these domains represents a critical application of artificial intelligence in addressing global 
environmental challenges, demonstrating the transformative potential of advanced computational techniques 
in understanding, monitoring, and responding to complex climate systems. Therefore, the chapter delves into 
the theoretical foundations of deep learning architectures, exploring how multiple neural network layers can 
uncover hidden patterns in climate data that traditional statistical models might miss.(21) This approach transcends 
previous computational limitations, offering researchers unprecedented insights into global environmental 
dynamics. Technological infrastructure developments have been crucial in enabling these advanced modeling 
techniques. The proliferation of high-performance computing resources—including multi-core processors and 
specialized graphical processing units—has made training complex neural networks increasingly feasible. These 
technological innovations allow for more sophisticated, layered computational models that can handle the 
immense complexity of global climate systems.(22) By leveraging deep learning’s ability to learn and abstract 
information across multiple computational layers, researchers can now develop more precise, adaptive 
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climate models. These models represent a significant leap forward in our capacity to understand, predict, and 
potentially mitigate the impacts of climate change.The research underscores deep learning’s transformative 
potential, positioning it as a critical tool in addressing one of the most complex scientific challenges of our 
time: comprehending and responding to global environmental transformation.(23)

Convolutional Neural Networks (CNNs)
Recently, CNN architectures have been widely used in the climate field. CNNs have several hidden layers 

to detect or exploit patterns related to the given input data. They act like a human visual perception system 
and have proven to be efficient in image and video recognition and classification. CNNs are suitable for 
handling multi-dimensional data such as time-series data, climate model data, agriculture-based data, and 
remote sensing data communications. The network first passes the data through several layers of convolution, 
normalization, scaling, and pooling using non-linear activations.(24) It sends the data to a kind of fully connected 
hidden layers similar to an artificial neural network to make predictions on the given dataset. These fully 
connected layers are just the multi-layer perceptron. Convolution is the mathematical process of combining 
two functions to produce a third function. In CNNs, it determines the input values and weights using the kernel 
function, creates the feature map, sweeps across the input data, and then modifies or processes it by using 
pooling techniques. Batch normalization is used to improve the training of the neural network to normalize the 
input activations. It is a simple and effective technique that allows for the use of much higher variances and 
minimal regularization inside the operation function. It improves learning in a network and the lateral speed of 
training. Batch normalization can be commonly used as a default.

Recurrent Neural Networks (RNNs)
Recurrent neural networks (RNN) are a type of artificial neural network. The main advantage of a recurrent 

neural network, which makes it unique from other types of networks, is that it is capable of performing well 
with sequential as well as time series data due to its feedback loop that allows connection to previous inputs 
and outputs. There are two types of loops in RNN, namely, the temporal loop and the spatial loop.(25,26) A 
temporal loop connects previous layers to the current layer, and a spatial loop connects the same layers in 
time.

A recurrent neural network is trained to perform a specific task under a supervised learning setting. RNNs 
have internal memories, meaning they can remember important information from previous inputs and use it 
later in the future. In RNNs, when we calculate the next output given the current input, they consider previous 
knowledge as well as the current input. However, the main problem with recurrent neural networks is the 
vanishing gradient problem. This vanishing gradient problem occurs when the gradients flow back in time and 
become so small that they stop the learning process of the network. To solve this problem, Long Short-Term 
Memory (LSTM) networks, which are a more advanced form of RNN, have been introduced.

Generative Adversarial Networks (GANs)
GANs are a class of unsupervised deep learning-based generative models that can learn to generate 

authentic data samples. There are two major components of GAN: a discriminator network and a generator. 
The main characteristics of the GAN network are that they are context-specific, can extract, model, and 
replicate statistically frequent patterns among both discrete and continuous variables. It also helps understand 
higher-order interactions and can model nonlinearity more applicable for real-life problems than its linear 
counterparts. GANs generate new data by learning very complex relationships and structures among different 
kinds of data, and they can generate large amounts of data that then feed a wide variety of deep learning 
models.(27,28) The discriminative model, which tries to distinguish between the fake and real data, is modeled 
by deep neural networks that are often referred to as the classifier. The generative model, modeled by deep 
neural networks, is used to produce ‘fake’ data. These generated data are of similar nature to the initial data 
from the training set.

In terms of climate change, GANs have been used in various applications for diverse purposes such as 
anomaly detection and data utilization, from remote sensing and simulation outputs. Moreover, recent work 
demonstrates the advantages of GANs in climate science by using climate data to solve data-related problems, 
including remote sensing, weather forecasting, and climate model development. With the help of GANs, 
futuristic climate models are being developed more accurately and generating more precise data.(29) These 
models forecast temperature, precipitation, and sea level. By delivering better outputs, they will help make 
it possible for places around the world to understand and predict what conditions to expect in the future. A 
series of advances were discovered in remote sensing to characterize and detect uncertain conditions such as 
cyclones and to build a 3D tree model in local regions. GANs help in the generation of authentic data using 
unsupervised learning, which provides opportunities for invaluable but limited data applications.
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Applications of AI and Machine Learning in Climate Change Studies
Deep learning and machine learning have been successfully applied in climate informatics on various 

themes, including weather and climate prediction, climate simulation, data-driven parameterization, and the 
development of simplified climate models. In this chapter, we present some important applications of advanced 
AI, ML, and DL techniques on different themes of climate change. These techniques have developed over time 
to solve a range of complex associated problems, from global climate forecasting to local severe weather 
prediction.(30,31) The success of statistical weather prediction and climate prediction methods mostly depends 
on numerous features. ML and DL approaches have achieved state-of-the-art results in various computer vision, 
natural language processing, and quantitative analysis tasks (figure 2).

Figure 2. Introduction of AI and Machine learning(8,10,17)

The primary contribution of this study has been a comprehensive review of advanced machine learning and 
deep learning approaches that contribute to the fields of weather forecasting and climate change studies. Our 
review showed that many sophisticated deep learning architectures have been developed over the years in 
application to various fields, including geophysical datasets. However, due to space constraints, the number 
of applications in weather and climate science is relatively limited.(32) A proper and future-oriented sense of 
weather forecasting is really necessary to take necessary measurements on time. Moreover, existing forecasting 
methods suffer from rapid land-use changes and climate change, and this limitation is forcing the meteorological 
community to improve existing methods or create new ones to achieve accurate forecasts.

Climate Pattern Recognition
Climate patterns can be associated with the availability of sunshine or wind for renewable energy 

applications, flooding or drought patterns for water management, and, at finer scales, they may also affect 
the predictability of those weather variations that could compromise the collection activities of solar or wind 
generation forecasting systems, or could challenge the structural resilience of hydroelectric power generation 
systems. Historical data about temperature, pressure, humidity, and wind shifts are usually employed in 
numerical weather models and in climate studies, offering regional and global coverage for machine learning 
techniques.(33)

Interestingly, features associated with reanalysis data are more suited for climate pattern recognition 
purposes than those of direct measurements, especially at finer scales. Direct measurements are composed 
of point data, gathered at locations with specific latitudes and longitudes that, being specific to well-defined 
regions, may poorly represent geospatial patterns, tensioned wave patterns,(34) spatial correlations, or complex 
atmospheric dynamics; direct measurements are not capable of capturing microclimates, which is a disadvantage 
for climate studies. In contrast, reanalysis data have a more widespread spatial distribution, providing source 
data for the numerical weather models responsible for generating forecasts, as well as for the atmospheric-
oceanic and physical state models that support climate studies.
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Extreme Weather Event Prediction
Extreme weather events are one of the biggest concerns regarding the impacts of climate change. There 

is a consensus that these events will most likely increase in frequency and intensity. With the prediction of 
these events, it is possible to have action plans for when they occur, reducing their impact. Some solutions use 
statistical methods to predict extreme events by combining data from a few variables, some data preparation, 
feature engineering, and time series forecasts within specified tolerances. Others use data classification methods 
to predict the classes of extreme events with more data preprocessing and feature engineering techniques and 
a window to include past event data.(35)

Combined data feature engineering time series forecasts were remediated using a neural network-based 
solution. The initial dataset consisted of 18 attributes for a period of 84 months. Simple transformations of 
the original data were carried out based on the values for wind speed and the day of the event.(36) Due to the 
success of deep learning in solving various business problems and the possibility of using these models to find 
the correlations that classical statistical models have difficulty finding, the study analyzed the impact of a deep 
learning neural network model.

Climate Data Analysis and Visualization
Climate change spatial patterns may be described, processed, and interpreted using software tools, GIS 

technologies, and language libraries. These include interactive cartographic tools, Geographic Information 
System (GIS) software, and language libraries, which are often used for processing and evaluating geographic 
data. These software tools may be used to process environmental data and are sometimes linked to advanced 
visualization tools, which help to transfer bare numbers to comprehensive data visualization forms such as 
maps, timelines, trends, or pie and bar charts and show clear climate meanings to users.(37)

Visualization tools incorporate statistical data into different graphs and maps to give the map and different 
graphs colors, legends, and sizing properties, and enable developers to interact with these datasets clearly. 
A color gradient may be used as a legend, enabling developers to quickly understand and interpret various 
climate and environmental data.(38) Map-based visualization may also show changes in climate variables such 
as temperature increases and rainfall patterns by region. Symbols or heatmap overlays may be used to show 
climate change on top of energy-related datasets. In urban environmental studies, for instance, users may 
interact with maps to improve their understanding of temperature, air quality, rainfall, water levels, and other 
environmental patterns.

Challenges and Future Directions
Climate change represents one of the most critical challenges to global sustainability, demanding innovative 

interdisciplinary approaches to understand, predict, and mitigate environmental transformations. The 
convergence of artificial intelligence, machine learning, and deep learning technologies offers unprecedented 
computational capabilities for addressing this complex global issue. This chapter provides a comprehensive 
examination of advanced AI and machine learning techniques applied to climate change research, exploring 
their transformative potential in solving and predicting environmental challenges. By leveraging sophisticated 
computational methodologies, researchers can now develop more nuanced, precise models of complex climate 
systems that traditional approaches could not effectively capture.(39,41)The research focuses on critical areas of 
climate change investigation, including:

I’ll provide concise notes on these climate modeling and atmospheric research topics.

Dynamical Downscaling of Climate Models
•	 A technique to enhance spatial resolution of global climate models
•	 Uses regional climate models to generate high-resolution climate projections
•	 Captures localized terrain effects and micro-scale meteorological processes
•	 Bridges gap between broad global simulations and detailed regional climate understanding

Advanced Weather Simulations
•	 Utilizes high-performance computing and sophisticated algorithms
•	 Integrates complex atmospheric physics and real-time data assimilation
•	 Enables more accurate short-term and medium-range weather predictions
•	 Incorporates machine learning and AI to improve predictive capabilities

Precise Climate Forecasting
•	 Combines multiple data sources including satellite, ground, and oceanic observations
•	 Employs advanced statistical and machine learning techniques
•	 Focuses on reducing uncertainty in long-term climate projections
•	 Develops probabilistic forecasting models for different climate scenarios
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Precipitation Pattern Analysis
•	 Examines spatial and temporal variations in rainfall distribution
•	 Uses statistical techniques to identify trends and anomalies
•	 Crucial for water resource management and agricultural planning
•	 Integrates remote sensing and ground-based precipitation data

Extreme Weather Event Prediction
•	 Develops early warning systems for severe weather phenomena
•	 Uses ensemble forecasting and probabilistic approaches
•	 Analyzes historical data and climate change impacts on event frequency
•	 Supports disaster preparedness and risk mitigation strategies

Time-Dependent Climate Studies
•	 Investigates climate changes across different temporal scales
•	 Explores historical climate reconstructions and future projections
•	 Analyzes decadal and centennial climate variability
•	 Integrates paleoclimate data with contemporary climate models

Large-Scale Feature Learning and Classification
•	 Applies machine learning techniques to climate data analysis
•	 Identifies complex atmospheric and oceanic patterns
•	 Uses deep learning for feature extraction and climate pattern recognition
•	 Supports climate change research and predictive modeling

A key contribution of this article is the comprehensive categorization of AI and machine learning techniques 
specifically tailored to climate change research.(42) This taxonomical approach provides researchers with a 
structured framework for implementing advanced computational strategies in future environmental studies. The 
investigation goes beyond mere technical analysis, offering a critical exploration of how artificial intelligence 
can revolutionize our understanding of global climate dynamics. By synthesizing diverse computational 
techniques, the research demonstrates the potential to transform climate change research from retrospective 
analysis to predictive, proactive modeling. The chapter systematically examines the application of advanced 
AI methodologies across multiple research domains, highlighting their capacity to process massive, complex 
datasets and uncover intricate environmental patterns.(43) These techniques enable researchers to develop more 
sophisticated models that can simulate long-term climate scenarios with unprecedented accuracy. Moreover, 
the research critically assesses current technological limitations and outlines future research directions.(39) 
By identifying existing challenges and potential avenues for technological innovation, the chapter provides a 
roadmap for continued advancement in AI-driven climate change research. Ultimately, this comprehensive study 
underscores the critical role of artificial intelligence in addressing one of the most significant environmental 
challenges of our time, offering hope through technological innovation and sophisticated computational 
approaches.

CONCLUSIONS 
The comprehensive exploration of advanced artificial intelligence, machine learning, and deep learning 

techniques for climate change studies reveals a transformative landscape of computational methodologies 
with significant potential for environmental research and intervention. Our systematic investigation has 
demonstrated the remarkable capabilities of these advanced computational techniques across multiple 
critical domains, uncovering new pathways for understanding and addressing global environmental challenges. 
The research highlights the multifaceted nature of AI applications in climate science, emphasizing not only 
traditional data sources but also the critical role of emerging computational approaches in environmental 
modeling. By integrating sophisticated machine learning algorithms with complex climate datasets, researchers 
can now generate more nuanced, precise representations of environmental dynamics that were previously 
impossible to conceptualize.

Key findings underscore the significant advancement of AI and machine learning techniques, which have 
achieved a sophisticated level of development offering unprecedented efficiency, accuracy, interpretability, and 
generalizability in climate change studies. These computational approaches provide valuable supplementary 
tools to expert-led climate research, enabling more comprehensive and dynamic investigation of environmental 
systems. Advanced techniques show particular promise in spatiotemporal weather forecasting, complex 
environmental modeling, and predictive climate change analysis. Looking forward, the research community 
must prioritize expanding the application domains of these computational techniques. This involves 
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diversifying research beyond current focus areas of atmospheric physics, ecological processes, and remote 
sensing, and exploring interdisciplinary approaches that integrate AI techniques with broader environmental 
research domains. The goal is to develop more holistic, adaptive frameworks that can capture the intricate, 
interconnected nature of global climate systems. Critical recommendations for future research include 
enhancing computational methodologies, developing more sophisticated machine learning algorithms capable 
of processing increasingly complex, multidimensional climate datasets, and improving model interpretability 
and transparency. Researchers should also focus on integrating emerging technologies and creating synergies 
between AI, machine learning, and other computational innovations. A paramount objective is translating 
advanced computational research into actionable policy and intervention strategies. By supporting data-
driven decision-making processes in climate change mitigation and adaptation, these technologies can bridge 
the gap between scientific understanding and practical environmental management. This requires fostering 
interdisciplinary collaboration, encouraging knowledge exchange between climate scientists, computer 
scientists, and domain experts. While current AI techniques demonstrate significant potential, substantial 
research opportunities remain. Future investigations must continue to expand application areas, improve 
computational methodologies, and develop more comprehensive approaches to climate change modeling. 
The research ultimately underscores artificial intelligence’s transformative potential in addressing global 
environmental challenges, offering a beacon of technological hope in our collective effort to understand and 
mitigate climate change impacts.
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Major heat wave hitting the SW United 
States in 3 weeks. Be prepared for an 
extended period of extreme tempera-
tures and higher humidity than usual.

Warning: Baseball-sized hail and 
strong winds from the north are ex-
tremely likely to hit your house in 
approximately 20 minutes. Move be-
longings inside, and stay away from 
any north-facing windows.

Extreme cold temperatures are arriv-
ing in your area in 3 days and will last 
for at least 4 days. Prepare now to 
ensure your pipes do not freeze, and 
be ready for potentially extended peri-
ods of electrical outages.

Imagine that high-impact weather phenom-
ena, such as those described above, are forecast 
with sufficiently advanced warning and preci-
sion that humankind is able to significantly 
mitigate the effects of such events globally. Fur-
thermore, the predictions are known to be trust-
worthy, so individuals and local and state gov-

ernments can act immediately 
to save lives and property.

Such a scenario is not just a 
vision: It may be a reality in a 
few years. As the climate 
changes, weather extremes are 

affecting species and ecosystems around the 
globe—and are becoming more extreme (see the 
article by Michael Wehner, Physics Today, Sep-
tember 2023, page 40). At the same time, recent 
developments in artificial intelligence (AI) and 
machine learning (ML) are showing how that 
vision might be realized.

AI offers multiple methods for handling 
large quantities of data, helping automate pro-
cesses, and providing information to human 
decision makers.1 Traditional AI methods have 
been used in environmental sciences for years.2 
Such methods include statistical techniques, 
such as linear regression, and basic object-
grouping methods, such as clustering. Both 
have a history in environmental-science dating 
back several decades.3 A little over a decade 
ago, weather and climate phenomena began to 
be understood with more-modern AI tech-
niques, including decision trees—basically 
flowcharts created by an algorithm rather than 
constructed by hand—and groups of trees 
known as random forests.

ML, a subset of AI, focuses on methods that 
use data to learn and adapt so that they’re 

Amy McGovern directs the NSF AI Institute for Research 
on Trustworthy AI in Weather, Climate, and Coastal 
Oceanography (AI2ES) and is a professor in computer science 
and meteorology at the University of Oklahoma in Norman. 
Philippe Tissot coleads the coastal oceanography team at 
AI2ES and is the chair for coastal artificial intelligence at 
Texas A&M University–Corpus Christi. Ann Bostrom 
coleads the risk communication team at AI2ES and is an 
environmental policy professor at the University of 
Washington in Seattle.

By improving the prediction, understanding, and 

communication of powerful events in the atmosphere 

and ocean, artificial intelligence can revolutionize how 

communities respond to climate change.

T he year is 2028 and the weather continues 
to produce climate-induced extremes, 
but something has changed. Your phone 
is now giving you early, accurate warnings 
to help you prepare.
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generalizable to novel situations. When AI is discussed in the 
news, it is most often referring to a specifi c form of ML called 
deep learning,4 which has become popular lately. The key 
changes facilitating the explosion of deep learning have been the 
creation of innovative ways to handle spatial and temporal de-
pendencies in the data and corresponding hardware improve-
ments, which have made it possible for neural networks, a type 
of deep learning, to be trained with millions of parameters.

Deep learning has revolutionized the fi eld of AI across var-
ious applications, including language translation, game theory, 
and image recognition (see, for example, the article by Sankar 
Das Sarma, Dong- Ling Deng, and Lu- Ming Duan, Physics 
Today, March 2019, page 48). AI methods can do the same for 
weather and climate predictions too (see reference 5 and Phys-
ics Today, May 2019, page 32). For example, multiple recent 
papers have introduced global weather- forecasting systems 
based entirely on AI methods. Although those systems need to 
be trained by traditional numerical weather- prediction mod-
els, their predictions are made solely through a deep- learning 
algorithm and do not depend on physics- based equations.6

Despite the long development history of AI methods for 
predicting weather and climate events, few have been imple-
mented operationally by NOAA and private industry. Early 
operational AI models were based on relatively simple architec-
tures, such as tree- based designs that can be read by humans. 
Several new startup companies and larger, established compa-
nies, however, are focused on applying more complex AI meth-
ods to commercial weather- prediction products. NOAA has 

also recently begun to deploy AI methods for targeted applica-
tions. With all the changes, it is critical that AI methods are 
benefi cial to society, that they can be gauged by their users for 
their applicability, and that their predictions can be trusted.

Developing and deploying trustworthy AI requires a diverse 
multidisciplinary research team. The team at the NSF AI Institute 
for Research on Trustworthy AI in Weather, Climate, and Coastal 
Oceanography (AI2ES), for which the three of us work, consists 
of AI developers, social scientists, atmospheric and ocean scien-
tists, and end users. AI2ES is rapidly developing new AI methods 
that will enable us to improve our scientifi c understanding and 
prediction of high- impact weather and climate phenomena, user 
trust in AI products, and our communication of AI’s risks.7

Developing trustworthy AI
The diagram on page 29 outlines how the diff erent pieces of 
AI2ES work together to create trustworthy AI. Traditional AI 
work is often done by only computer- science researchers, but 
our synergistic team is made up of researchers in AI, atmospheric 
science, coastal oceanography, and risk communication. Our goal 
is to ensure that we meet the needs of our end users— primarily 
forecasters and emergency managers— and that we understand 
what it means for AI to be trustworthy.

In any risky situation, successfully communicating and 
managing risk depends on the trust between those involved.8
When applying AI methods to climate and extreme- weather 
forecasting, the uncertainties of AI need to be added to the 
uncertainties of the environmental predictions. The com-

SEA TURTLES were rescued off  the coast of Texas by volunteers in February 2022 (left) and January 2018 (right) after the successful 
prediction of a  cold- stunning weather event by an  artifi cial- intelligence- based forecasting model. After measurements of the turtles were 
taken, they were transported to a rehabilitation facility. (Courtesy of AI2ES.)
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pounding uncertainties raise the stakes for eff ectively commu-
nicating the risks and make trust even more critical. When trust 
in AI is low, AI- based forecasts and warnings may be ignored 
or misconstrued. AI, therefore, needs to be both trusted and 
trustworthy to be used in various high- risk situations.

Trust is usually enhanced by relevant evidence of compe-
tence and reliability,9 but trust in an AI model is also contingent 
on people believing that the model aligns with their own inter-
ests. Biased or poor- quality training data can lead to biased or 
more-uncertain AI forecasts, which have the potential to harm 
those whose actions depend on the forecasts.

Models in Earth sciences are used for many purposes. Some 
examples at AI2ES include predicting freezes for various 
environmental- management purposes, protecting endangered 
species, and forecasting and warning for severe convective 
storms to protect people and save lives. Risk att itudes and trust 
are known to vary by the nature of the decision and the decision 
context10—who controls the decision making, for example, and 
how catastrophic the consequences might be— and by the att ri-
butes of the modeling system and modeling context.11 For those 
reasons, understanding the nature of trust and developing trust-
worthy AI for Earth sciences requires codeveloping it with end 
users. For applications where AI can aff ect vulnerable or large 
populations, it’s particularly important that AI developers work-
ing with end users employ a convergence approach— that is, 
have experts in the environmental, decision, and AI disciplines 
work together closely on specifi c, compelling problems.

AI2ES is developing and testing explainable AI methods to 
help describe to end users how AI models function. Existing 
physics- based prediction models have the advantage of being 
driven by the underlying physics of the problem; one can nu-
merically represent the Navier– Stokes equations, for example. 
But because AI is unconstrained by the laws of physics, it could 
come up with a solution that violates those laws. Providing end 
users with diff erent methods to understand what the AI model 
has learned may improve trust, and we are interviewing end 
users to understand the effi  cacy of those methods.

Trust, however, is contextual and subjective, and trust in AI 
models for weather and climate depends on a number of addi-

tional factors beyond peering inside the AI model. Those fac-
tors include having experience with the model over time, 
documenting performance and lack of bias across a range of 
extreme events for which the models are designed, and work-
ing with end users to ensure that their needs are met.

Saving sea turtles
When strong cold fronts, such as the 2021 winter storm dubbed 
Uri, reach the southeast US, the temperatures of bays, lagunas, 
and other shallow bodies of water cool down rapidly. Below 
certain water temperature thresholds,12 fi sh and endangered 
sea turtles become lethargic, or cold stunned, and most perish 
if they’re not rescued. A community- wide eff ort for the Texas 
coast has grown since the mid 2000s to prepare for and mitigate 
the events. The program was updated following Uri, during 
which a record 13 000- plus sea turtles became cold stunned. 
Volunteers and employees of local, state, and federal agencies 
collect cold- stunned sea turtles along the shores or in bodies of 
water, and barge operators voluntarily interrupt their naviga-
tion through those waters. As climate change increases the 
frequency of extreme events, those types of large- scale orga-
nized human interventions will arguably need to become more 
frequent and more urgent if increasingly endangered species 
and fragile ecosystems are to be preserved.

To coordinate the rescue of cold- stunned turtles, a team needs 
real- time predictions of key environmental parameters, such as 
localized water temperature. When AI has access to time series of 
parameters from past extreme events, it is particularly well suited 
to develop targeted operational models, such as one for predicting 
when a cold- stunning event will happen. AI can take advantage 
of big, diverse data, such as gridded numerical weather predic-
tions, satellite imagery, and ground- sensor readings.

Although the calibration of AI models can be lengthy, and 
care must be taken to maximize and test generalization, oper-
ational computations are fast once the information is available, 
particularly when done for just a few locations. The operational 
cold- stunning model is a type of neural network and has been 
used since the late 2000s. The fi rst advisory and voluntary nav-
igation interruption took place 8–10 January 2010 with a pre-

Workforce
development

Broadening
participation

Risk
communication

Environmental
science

Trustworthy AI

Ethical, responsible, and use-inspired AI
ai2es.org

THE COMPREHENSIVE APPROACH created by AI2ES, the NSF AI Institute for Research on Trustworthy AI in Weather, Climate, and Coastal 
Oceanography. (Courtesy of AI2ES.)
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diction lead time of 48 hours. The system has been used several 
times since, including during the past three winters, with pre-
diction lead times extended to 120 hours. The model is an es-
sential decision tool that local, state, and federal agency repre-
sentatives use when discussing with the private sector the 
optimal timing of activity interruptions in Texas’s Laguna 
Madre. The specifi cally designed AI model provides the long 
lead time critical for redirecting cargo, contacting volunteers, 
and carrying out other actions.

The sea- turtle program brings the possibility to test how 
and why the trust in its AI model came about. The research 
team and end users are further developing AI ensemble models 
to quantify uncertainties around the predicted timing of the 
cold stunnings. An events’ end is particularly challenging to 
predict with a longer lead time.

As the frequency of extreme events increases, sea levels rise, 
and other climate- driven challenges develop, even small fl ood-
ing events will have large eff ects. So decision makers will have 
to start prioritizing and preparing for a broad range of emer-
gency events beyond the largest ones, such as hurricanes, for 
which state and federal resources are deployed to assist local 
responders. Results are demonstrating that AI is a well- suited 
methodology to take advantage of large, diverse data sets and 
model the nonlinear processes of coastal zones and other envi-
ronmental systems. Other coastal environmental models devel-
oped by AI2ES researchers include predictions of coastal fog,13

coastal inundation, harmful algal blooms, eddy loop currents 
in the Gulf of Mexico, and compound fl ooding.

Severe storms
Thunderstorms worldwide produce various dangerous haz-
ards: strong wind, lightning, hail, and tornadoes— all of which 

cause signifi cant loss of life and property. Of the billion- dollar 
weather and climate disasters counted by NOAA every year, 
thunderstorms account for the majority of the cleanup cost. 
AI2ES is currently creating novel AI approaches to improve the 
prediction and understanding of such hazards.

One such example is predicting the initiation of thunder-
storms up to an hour before they begin. Even 30 minutes of 
trustworthy warnings will save lives and property. Airplanes 
could be rerouted, boats could be brought back to shore and 
sheltered, and event planners could safely evacuate large out-
door events to avoid disasters, such as the hailstorm that hit 
Red Rocks Amphitheatre in Morrison, Colorado, in June and 
injured 80–90 people.

AI2ES’s approach to modeling convective storms is codevel-
oped with researchers in NOAA’s National Severe Storms 
Laboratory. Our work builds on NOAA’s warn-on- forecast 
system (WoFS).14 It is a numerical weather- prediction system 
that is run in real time at a high resolution over areas of the US 
where the Storm Prediction Center expects a higher probability 
of severe storms. AI2ES developed an AI postprocessing sys-
tem that uses numerical weather- prediction models and cur-
rent observations and outputs a real- time prediction of where 
storms are most likely to occur in the next 30 minutes. To help 
ensure that the system is trustworthy, AI2ES and NOAA will 
continue to develop it at NOAA’s Hazardous Weather Testbed, 
a unique facility that allows forecasters and emergency man-
agers to try out new technologies during severe weather events 
and to provide feedback to the developers.

AI2ES is also working to improve the understanding and 
prediction of tornadoes and hail. They are small- scale phenom-
ena that are challenging to predict, especially on a short time 
scale and with high spatial precision, with current operational 
weather models. One of our most recent methods is codevel-
oped with NOAA researchers working on the WoFS. Our focus 
is on improving the nowcasting of severe hail events, which 
predicts such events at high resolution spatially and within an 
hour of their arrival. The WoFS runs in real time, but because 
of the computational complexity of the model, which ingests all 
the current observations, there is about a 15- to 30-minute lag 
between the observations and the system’s predictions. We de-
veloped an AI prediction system that uses deep learning to 
combine WoFS predictions with data from the National Light-

Hail as large as Ping-Pong balls reached the Oklahoma house 
of one of the authors (McGovern) in May 2013 (left) and May 
2015 (right).  Early- warning predictions of hailstorms are 
diffi  cult to make, but AI methods may be able to help 
improve the forecasting of those storms and other weather 
events. (Courtesy of Amy McGovern.)
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ning Detection Network, operated by Vaisala,15 
and we demonstrated a significant improvement 
in the accuracy of short-term hail prediction.

Ethical, responsible AI
An integral part of trustworthy AI is ensuring 
that it is developed ethically and responsibly. If 
not, AI for environmental sciences can go wrong 
in numerous ways.16 Extreme events tend to 
disproportionately harm areas with fewer re-
sources and places with histories of systematic 
discrimination. It is critical that society ensures 
that AI is not deployed in any manner that will 
perpetuate environmental or climate injustices. 
That way, society as a whole can be more resil-
ient to climate change.

Another potential issue with AI for weather 
prediction is bias, which affects all aspects of the 

AI training process. In recent work, we have developed a cat-
egorization of bias in AI for Earth sciences by breaking it into 
four main categories, each of which influences the others.17

● Systemic and structural biases include institutional and 
historical biases that can influence the choices of data that are 
made available, the labels on the data used for training AI, and 
other aspects of AI model development and use. For example, 
we demonstrated that tropical-cyclone initiation prediction is 
more likely to occur after sunrise than before because of institu-
tional practices around examining the visible satellite imagery.

● Data bias can occur because of the data selected to train 
the models and the processing techniques used to prepare the 
data for training. Those choices can result in data that are not 
representative of the intended populations, areas, or events 
being modeled. Once the data are prepared and the AI model 
trained, biases can be present in the validation of the model. 
Humans must choose which score they will use to validate the 
model and which cases will be used as a case study. The choices 
can be affected by human judgment and decision biases, such 
as confirmation bias.18

● Statistical and model biases can affect the actual model 
that is trained and can be strongly affected by human biases. 
For example, human programmers must choose the methods 
that they will use to evaluate the model.

● Human biases are present throughout AI methods, from 
data selection to the choice of model, but they are also present 
in the deployment and use of the model. End users, such as 
forecasters and emergency managers, for example, may have 
information overload or may need to make split-second deci-
sions, which can bias their use of AI.

Three of the perhaps most common ethical theories are ap-
plicable to AI for the environmental sciences: consequential-
ism, which judges the morality of an action by its conse-
quences, such as through a benefit–cost analysis; deontology, 
which judges whether an act is ethical by how the act conforms 
to duties or moral principles, such as the imperative to be hon-
est; and virtue ethics, which argues that a “right” action is 
important to achieve human well-being. Protecting the most 
vulnerable might not always pass a benefit–cost rule, but de-
ontological and virtue ethics could require it, making it 
imperative.

But even to understand how AI models might affect specific 

decisions or users in particular circumstances generally re-
quires an insider perspective, achievable only through devel-
oping AI with the people likely to be affected. Many of those 
concerns and needs can be addressed, and trustworthy AI can 
be developed by early and continued codevelopment of AI 
models with direct representation; meaningful, ongoing par-
ticipation of likely end-user communities; and communication 
throughout the development process with risk-communication 
experts. But such capabilities require organizational intent 
from the teams developing the AI models.

The future of trustworthy AI
Given the current exponential growth of AI in the sciences, 
society stands at the cusp of major developments in AI for sci-
ence and society in general. New methods could be developed 
and deployed with a swiftness that was not possible even a few 
years ago. That gives us an unprecedented opportunity to 
shape the process of how AI models are developed to fully 
benefit society and to address environmental and climate-
justice issues. The process, however, must ensure that the mod-
els are ethical, responsible, and deserving of trust if society is 
to realize the full benefits of AI.

To achieve such goals, and to minimize problems during the 
release of new technology, more comprehensive processes and 
development teams must be engaged. Funding from federal 
agencies, private-sector entities, and other places must be 
structured to reflect those needs. Codevelopment of AI re-
quires funding that allows for and encourages the develop-
ment of multidisciplinary teams committed to working with 
end users. The benefits include acting ethically, avoiding large 
disparities, increasing resilience to climate change, and broad-
ening the viewpoints, knowledge, and values represented on 
the modeling teams.
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Abstract: With accelerating climate change and rising global energy consumption, the application of
artificial intelligence (AI) and machine learning (ML) has emerged as a crucial tool for enhancing
energy efficiency and mitigating the impacts of climate change. However, their implementation has
a dual character: on one hand, AI facilitates sustainable solutions, including energy optimization,
renewable energy integration and carbon reduction; on the other hand, the training and operation
of large language models (LLMs) entail significant energy consumption, potentially undermining
carbon neutrality efforts. Key findings include an analysis of 237 scientific publications from 2010 to
2024, which highlights significant advancements and obstacles to AI adoption across sectors, such
as construction, transportation, industry, energy and households. The review showed that interest
in the use of AI and ML in energy efficiency has grown significantly: over 60% of the documents
have been published in the last two years, with the topics of sustainable construction and climate
change forecasting attracting the most interest. Most of the articles are published by researchers
from China, India, the UK and the USA, (28–33 articles). This is more than twice the number of
publications from researchers around the rest of the world; 58% of research is concentrated in three
areas: engineering, computer science and energy. In conclusion, the review also identifies areas for
further research aimed at minimizing the negative impacts of AI and maximizing its contribution to
sustainable development, including the development of more energy-efficient AI architectures and
new methods of energy management.

Keywords: artificial intelligence; energy consumption; climate change; socially responsible business;
sustainability

1. Introduction

Climate change and rising energy consumption are among the most pressing chal-
lenges facing the modern society. The rapid growth in energy consumption, driven by
economic expansion and technological development, contributes to increased greenhouse
gas emissions and accelerates global climate change. In this context, the urgency of find-
ing innovative solutions to enhance energy efficiency is becoming increasingly apparent.
Artificial intelligence (AI) and machine learning (ML) have advanced rapidly in recent
years, showing significant potential to solve complex environmental challenges, such as
enhancing energy efficiency and reducing carbon emissions [1,2]. However, their impact
on energy consumption and climate change remains ambiguous.

On the one hand, AI holds significant potential to address global challenges outlined
by the UN [3], including climate change and other complex environmental and social issues,
which includes the following:
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- By predicting energy consumption, optimizing energy systems and integrating re-
newable energy sources, AI has the potential to become a key tool in the fight against
climate change [4,5].

- Improving the energy efficiency of buildings and industrial infrastructure, optimizing
the operation of energy systems in real time helps reduce overall energy consumption
and minimize the impact on the environment [6–9].

- Machine learning (ML) is used to predict climate change and its impact on energy
systems. Machine learning models allow us to build scenarios of future energy
consumption and adapt infrastructure to new conditions [10,11].

- AI can enhance the efficiency of renewable energy sources, such as wind and solar
power plants [6,9], which is particularly important in the decarbonization process [12].

- AI plays a key role in monitoring, managing and forecasting energy needs, taking into
account future climate change. This includes optimizing energy distribution, integrat-
ing renewable sources and reducing the load on power systems during periods of
peak demand [7,13,14]. These studies propose solutions to enhance the sustainability
of energy systems and reduce their carbon footprint [14,15].

On the other hand, the rapid growth in AI usage, particularly in large language
model (LLM) training, has led to a substantial increase in energy consumption [16]. Tech
giants, such as Google, OpenAI, Microsoft and others, despite their ambitious goals, face
significant challenges in achieving carbon neutrality by 2030 [17,18]. The high energy costs
associated with creating and operating powerful AI models highlight the contradiction
between technological progress and its environmental consequences [19]. Moreover, the
rise in energy consumption is directly linked to an increasing carbon footprint [18,19].
Therefore scientific efforts are aimed at finding solutions to improve the energy efficiency
of AI systems and minimize their negative impact on the environment [3,18].

Investigating the application of AI and ML to improve energy efficiency holds signifi-
cant potential for creating a more sustainable future with minimal negative consequences
for the environment [20,21]. However, a full understanding of the current situation requires
analyzing current achievements and existing barriers to determine the effectiveness of inte-
grating AI into business models of enterprises to solve global humanity’s challenges [22,23].
Further research is crucial to understand how AI and ML can contribute to reduce global
energy consumption without introducing additional climate risks.

Thus, the aim of this review is to synthesize and systematize the existing scientific liter-
ature, demonstrating how artificial intelligence (AI) and machine learning (ML) techniques
can contribute to energy efficiency in different industries and countries. The review also
aims to analyze the role of AI in addressing current climate challenges, including reducing
carbon emissions and optimizing resource use.

In order to achieve the set goal, the following tasks are defined:

- identify the main trends and research directions in which AI and ML are applied to
improve energy efficiency and address climate challenges;

- assess the main technical barriers that limit the widespread adoption of AI and ML in
practice and identify directions for overcoming them;

- examine how AI and ML can contribute to reducing carbon footprints and optimize
resources for long-term sustainable development.

This review provides an in-depth and comprehensive study of the impact of AI and
ML on energy efficiency, addressing the interrelated energy and climate aspects of these
digital technologies. Unlike previous studies, this review focuses on a comprehensive
analysis of technological barriers and innovative solutions and outlines specific directions
for future research. The findings are aimed at contributing to the knowledge for both the
scientific community and practitioners working in the field of sustainable development
and energy management.

Section 1 contains a description of the relevance of the topic, the aims and tasks of the
study and a summary of the current review.
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Section 2 describes the methodology used to select and screen peer-reviewed articles,
ensuring a thorough and structured approach to the topic.

Section 3 contains a chosen selected list of research questions that are explored in the
research and deals with each topic individually.

Finally, Section 4 concludes the review by offering perspectives on future research
directions, emphasizing the critical need for continuous innovation to improve the energy
efficiency of companies and reduce the electricity consumption of LLMs by improving
their architecture.

2. Materials and Methods

This literature review addresses key issues related to the application of artificial
intelligence (AI) and machine learning (ML) techniques in the context of energy efficiency
and their impact on climate change. The following research questions were formulated to
structure the analysis:

- What energy-efficiency projects using AI and machine learning are currently being
implemented? This question aims to explore specific examples of AI and ML applica-
tions in energy-efficiency projects, with the goal of identifying successful cases and
innovative approaches.

- Which major industries, companies or countries are benefiting from the application of
AI and machine learning in energy efficiency? This question focuses on identifying key
players, such as industries, companies, and countries, that are most actively utilizing
AI and ML to achieve energy-efficiency solutions.

- What are the main problems and challenges facing companies, cities and states when
implementing energy-efficiency projects? This question seeks to uncover the existing
barriers for integrating AI into energy-efficiency practices, including technological,
financial and organizational obstacles.

- What are the prospects for applying AI and ML in energy-efficiency projects? This
question explores future research directions and innovations that could enhance the
use of AI in achieving energy-efficiency objectives.

The methodology of this literature review was developed to systematically analyze ex-
isting research on the application of artificial intelligence and machine learning techniques
in the field of energy efficiency and their impact on climate change. The primary goal is to
identify trends and challenges in the implementation of these technologies and forecast
their future impact on climate change. A systematic approach is used to emphasize the
transparency and reproducibility of the results.

The literature search was conducted using the Scopus database, which encompasses a
broad spectrum of peer-reviewed scientific articles and patents. The aim was to capture
a wide range of research across different fields and disciplines. Key terms relevant to the
research questions were used to develop the search strategy. The logical search string was
constructed as follows: TITLE-ABS-KEY ((“artificial intelligence” OR “machine learning”)
AND “energy efficiency” AND “climate change”) AND PUBYEAR AFT 2010 AND PUB-
YEAR BEF 2025. The search string was designed to capture both fundamental and recent
publications from 2010 to 2024, aiming to identify intersections between energy efficiency
and climate solutions through AI and ML. The keywords used in this literature review
were carefully selected to ensure both the completeness and relevance of the documents to
the study’s objectives and key research questions.

The search identified 237 relevant papers and 388 patents. Over 60% of the documents
were published in the last two years (2023–2024), reflecting a growing interest in the topic.
This rising trend is also evident in industry, with 243 patents filed in the past three years
(2022–2024), representing 63% of the total for the fourteen-year period. The increasing
number of patents is noT, with 59 filed in 2022, 85 in 2023 and 99 patents filed in 2024 (as of
16 October).

The resulting review data were categorized into key categories, including industries,
geographic distribution and types of research documents. Figure 1 illustrates the annual
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distribution of published papers (as of 16 October 2024), highlighting trends and research
activity over time. Source: Scopus Analytics.
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Figure 2 illustrates the distribution of scientific articles retrieved from the Scopus
database categorized by subject area (Source: Scopus Analytics). The figure reveals that
nearly 60% of the articles are concentrated in three fields: Engineering, Computer Science
and Energy.
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Figure 3 presents the number of articles published by researchers from various coun-
tries, highlighting the geographic diversity and concentration of research efforts, particu-
larly in China, India, the UK and the US (Source: Scopus Analytics).
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Figure 4 illustrates the distribution of documents by types, indicating that articles
and conference publications account for over 80% of the total, with articles comprising the
largest share (Source: Scopus Analytics).
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A systematic approach was employed to ensure comprehensive coverage of the field.
The selection process followed the methodology outlined in [24] and adhered to the guide-
lines set out in [25], ensuring transparency and rigor. Publications were evaluated using a
3-point quality scoring system to assess relevance and validity (see Table 1). Each study
was reviewed based on several criteria, including innovation, practical application and
strength of evidence. The systematic review method recommended in [26] was applied to
ensure the transparency and reproducibility of the results.
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Table 1. Evaluation of source quality.

Evaluation Question Description Evaluation Metric

1 Stage of implementation of the energy
efficiency project using AI and ML 1: Experiments; 2: Economic impact; 3: Scalability.

2 The magnitude of the energy efficiency
effect from AI and ML projects. 1: Negligible; 2: Enterprise level; 3: Country level.

3
Identification and discussion of

challenges in implementing AI and ML
for energy efficiency projects.

1: Minimal; 2: Key issues; 3: Detailed.

4 Proposing future research directions to
improve ML models. 1: Some; 2: General; 3: Detailed and innovative.

Source: compiled by authors.

This study focused on four key questions related to the application of AI and ML
in energy efficiency. These evaluative questions (see Table 1) facilitated a comprehen-
sive assessment of the research findings while adhering to the principles of relevance
and objectivity.

Consequently, this approach enabled in-depth analysis and the identification of the
most significant areas for further research.

3. Results

The analysis made it possible to identify the following topics in scientific research that
have undergone their evolution during the analyzed period.

1. Sustainable construction and green technologies that utilize AI and ML to enhance
the energy efficiency of buildings.
This topic centers on optimizing the energy efficiency of buildings, particularly in urban
areas affected by climate change and urban heat island effects. It encompasses the use
of physical simulation models, multi-criteria optimization, digital twins and cloud tech-
nologies to enhance the energy efficiency and resilience of buildings in the face of climate
change. Additionally, it addresses methods and approaches for improving building en-
ergy efficiency through passive measures, the use of sustainable ecological materials and
thermographic and AI-assisted optimization of the building life cycle.

2. Enhancing energy efficiency in transportation and e-mobility.
This topic addresses issues related to the development of electric vehicles, hybrid
transportation systems and the charging infrastructure. It encompasses transportation
energy management, energy efficiency and the safety of autonomous vehicles through
the application of AI and ML.

3. The role of AI in sustainable production and industrial automation.
This topic focuses on utilizing AI to optimize manufacturing processes, reduce energy
consumption and minimize the carbon footprint of the industry. It encompasses pre-
dictive maintenance, energy management and automation to enhance sustainability
and productivity, as well as the application of AI in agriculture.

4. Energy efficiency in smart energy grids.
This topic explores the role of AI and machine learning in optimizing energy manage-
ment within smart grids. It addresses demand management, real-time forecasting and
the integration of distributed energy sources to enhance grid stability and efficiency.

5. Climate change forecasting and the adaptation of energy systems.
This topic involves the application of mathematical models and machine learning to
predict climate change and its impact on energy systems. It includes the assessment of
future energy consumption scenarios, infrastructure adaptation and the development
of strategies to mitigate the negative effects of climate change on energy systems.

6. Machine learning for water resources management.
This topic addresses the use of machine learning to optimize membrane distillation
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processes, enhance the energy efficiency of solar desalination and solve global water
shortage problems through innovative technologies and bioreactors.

7. AI in renewable energy sources.
This topic involves the application of AI to optimize, predict and integrate renewable
energy sources, such as solar, wind and geothermal, into energy systems. The focus is
on enhancing the performance of geothermal heat pumps and developing predictive
models for energy management and grid interactions.

8. Energy transition and decarbonization through innovative technologies.
This topic focuses on reducing the carbon footprint across various sectors, including
construction, energy and transportation, while transitioning to a low-carbon economy
through the integration of renewable energy sources and innovative technologies. It
encompasses the use of blockchain, AI and cyber-physical systems (CPSs) to manage
energy consumption and promote sustainable development. Additionally, it includes
an analysis of economically feasible energy investments.

9. Carbon footprint of large AI language models.
This research focuses on the carbon footprint of large language models and explores
potential strategies for reducing it.

10. Post-combustion carbon capture and its optimization through multi-objective opti-
mization (MOE).
The application of machine learning to optimize post-combustion carbon capture
(PCCC) technologies encompasses enhancing the energy efficiency of carbon capture
processes, reducing emissions and integrating PCCC into industrial processes.

11. Climate change mitigation through AI.
This theme focuses on strategies to reduce carbon emissions, enhance energy efficiency
and promote sustainable practices across various sectors. It emphasizes the integration
of energy-efficient technologies, the modernization of infrastructure and the use of AI
to monitor climate impacts and adapt to climate change. Additionally, it includes the
monitoring and mitigation of ocean acidification.

12. Social, economic and political aspects of energy management.
The topic examines the role of public policies in promoting renewable energy, re-
ducing emissions and supporting sustainable development in the energy sector, as
well as government regulation and policies for energy transition. It includes pro-
grams to reduce energy consumption, rewards for energy savings and an analysis of
the impact of policy decisions on sustainable development and the UN Sustainable
Development Goals.

In Table 2, the distribution of sources by important topics (key research questions) and
years is presented.

Table 2. Thematic analysis by years.

Summary 2024 2023 2022 2021 2020

The impact of AI and ML on energy efficiency

Sustainable construction and green technologies using AI and ML
to enhance the energy efficiency of buildings. 44 10 8 8 9 9

Enhancing energy efficiency in transportation and e-mobility. 12 3 1 1 7 0

AI in sustainable production and industrial automation. 22 6 8 2 4 2

Energy efficiency in smart grids. 17 7 4 2 4 0

Climate change forecasting and adaptation of energy systems to
climate change. 27 8 5 5 6 3

ML for water resources management. 19 7 4 1 5 2

AI in renewable energy sources. 21 7 5 5 2 2
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Table 2. Cont.

Summary 2024 2023 2022 2021 2020

The impact of AI and ML on climate change.

Energy transition and decarbonization through
innovative technologies. 19 8 5 3 2 1

Carbon footprint of LLM. 10 5 2 1 0 2

Post-combustion carbon capture. 8 4 3 0 0 1

Mitigating the effects of climate change with the help of AI. 11 5 3 2 1 0

Policy and regulation.

Social, economic and political aspects of energy
consumption management. 27 8 5 5 6 3

Total

Source: compiled by authors.

3.1. Sustainable Construction and Green Technologies Using AI and ML to Enhance the Energy
Efficiency of Buildings

As indicated in the literature survey, sustainable building and the implementation
of green technologies using artificial intelligence and machine learning have emerged as
the most significant research topics in the face of global climate change over the past five
years. AI and ML technologies have been actively applied to develop energy prediction
and optimization models, particularly in urban areas, where urbanization and phenomena,
such as the urban heat island effect (UHI), necessitate solutions to enhance thermal comfort
and reduce energy consumption. The combination of physical simulation and AI can
accurately predict energy consumption under various climate scenarios, which not only
improves energy efficiency but also contributes to increase indoor thermal comfort [27].

A key challenge of sustainable building research is the application of ML and multi-
criteria optimization methods to enhance the energy performance of buildings and reduce
their carbon footprint, particularly in the context of climate change and urbanization. In
recent years, artificial intelligence (AI) and optimization (ML) have been actively utilized
to create models for predicting and optimizing energy consumption, especially in urban
areas affected by the urban heat island effect (UHI) and climate change.

3.1.1. Modeling and Forecasting

A study [28] emphasizes the significance of modeling heating, ventilation and air
conditioning (HVAC) systems using neural networks to enhance the energy efficiency
and comfort of buildings. The utilization of AI-based models enables the prediction of
HVAC system performance and their adaptation to specific environmental conditions,
resulting in a significant reduction in energy consumption. Additionally, in study [29],
the application of machine learning models for weather forecasting and the design of
energy-efficient building structures is explored, highlighting the creation of sustainable
urban environments capable of withstanding climate change.

Furthermore, study [30] analyzes mechanical cooling in high-rise buildings, demon-
strating that the application of ML to model climate conditions can improve the energy
efficiency of ventilation systems and promote energy savings. Study [31] highlights the con-
siderable potential of AI to manage variations in climate scenarios by predicting the future
energy demands of buildings and facilitating their adaptation to changing conditions.

Particular attention is given to optimizing heat transfer and enhancing comfort in
buildings. The use of advanced machine learning techniques, such as CNN-LSTM, effec-
tively simulates the thermal dynamics of buildings and optimizes HVAC systems, resulting
in a reduction of energy consumption from 15.7% to 22.3% [10]. Additionally, study [32]
investigates gradient boosting models, including LightGBM, CatBoost and XGBoost, which
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provide accurate predictions of energy consumption in office buildings, offering optimal
solutions for improving energy efficiency.

Work [33] highlights the significance of machine learning in predicting thermal loads
in residential buildings. This aids in reducing energy consumption and improving the
sustainability of energy management systems. Also, study [34] indicates that the more AI
and IoT devices are deployed in energy-intensive sectors of the economy, the higher their
energy efficiency becomes. Study [35] explores a hybrid strategy that integrates AI with
modeling tools, such as EnergyPlus™, to forecast annual cooling energy consumption. This
study offers a practical guide for reducing cooling costs by analyzing building materials
and design solutions.

3.1.2. The Use of Digital Twins

Digital twins and the Internet of Things (IoT) play a key role in predicting and op-
timizing the energy efficiency of buildings. These technologies facilitate the real-time
monitoring and management of energy systems, contributing to a more sustainable and
environmentally friendly urban environment [11]. The use of digital twins allows for the
integration of real-world data to enhance operational efficiency and reduce energy costs,
representing an important step towards the environmental sustainability of buildings.

The application of digital twins and the Internet of Things (IoT) offers unique oppor-
tunities for the real-time monitoring and control of energy systems, leading to improved
heat management and enhanced energy efficiency in buildings [14].

Digital twin and predictive models, such as LSTM and the Kalman filter, play a crucial
role in accurate energy consumption prediction through the processing of time series data
and optimization of energy processes [36]. The use of machine learning algorithms and
the Petri Net control system allows the thermal energy efficiency of vertical and horizontal
building envelopes to be achieved [37]. These technologies provide new opportunities
for sustainable building, particularly in the face of uncertainties associated with climate
change [38].

Research underscores the significance of utilizing digital twins and autonomous
machine learning agents to manage the energy consumption of buildings in the face of
unpredictable environmental changes. Specifically, the work in [39] highlights that adaptive
systems capable of learning from real-world data can substantially enhance the energy
efficiency of buildings. These methodologies are illustrated in work [37], which employs
machine learning and a Petri Net-based control system to optimize thermodynamic param-
eters of buildings, including the window type and insulation selection.

The utilization of digital twins and multi-criteria optimization enables the more ac-
curate modeling of the energy performance of buildings, providing effective solutions for
enhancing their energy efficiency [40]. These technologies contribute to the creation of
adaptive and resilient systems capable of responding effectively to variations in climatic
conditions while minimizing energy consumption, although delaying their implementation
may result in multi-billion-dollar losses [41].

3.1.3. Green Technologies and Ecological Materials

The development of sustainable construction and the implementation of green tech-
nologies aimed at enhancing the energy efficiency of buildings have become crucial compo-
nents in the battle against climate change. Key research areas encompass a broad spectrum
of topics, ranging from the physical modeling of buildings to the application of artificial
intelligence and machine learning for predicting and optimizing energy consumption.

A study [42] investigates the application of AI in designing green buildings within
healthcare facilities, emphasizing the selection of environmentally friendly materials and
energy consumption optimization during the operational phase. Techniques, such as
random forests and ant colony optimization, highlight the increasing interest in automated
energy and material management systems in the construction industry.
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Work [43] investigates green building techniques, including the use of recycled and
advanced materials, as well as the life-cycle optimization of buildings through simulation
and AI to reduce overall energy consumption and minimize the environmental impact. A
key focus of this study is the application of phase change materials (PCMs) and hybrid
cladding to decrease energy consumption for heating and cooling. An example includes a
hybrid system composed of 10% polycarbonate and 90% aluminum, which demonstrates
improved energy efficiency compared to using pure aluminum or polycarbonate [44].

Moreover, digitalization is crucial across all phases of the building life cycle, from
design to operation, which is especially significant for developing countries [14]. This
underscores the importance of employing AI and ML to enhance the energy efficiency of
buildings in the context of climate change.

The utilization of adaptive materials, such as aerogels, is increasingly recognized as a
significant factor in enhancing the thermal performance of buildings. A study [45] explores
the uncertainties associated with the use of these materials in subtropical climates. In
particular, the application of machine learning to optimize the thermal performance of
buildings highlights the necessity of adapting materials to changing climatic conditions in
order to improve energy efficiency.

Therefore, the application of green technologies, AI and adaptive materials, such
as phase change materials (PCMs) and aerogels, along with digital technologies and ma-
chine learning, contributes to enhancing the sustainability of buildings, reduces energy
consumption and minimizes their carbon footprint [46].

3.1.4. Passive Energy Efficiency Measures

Passive building design strategies, including bioclimatic approaches and the incorpora-
tion of natural ventilation, continue to be important components of sustainable construction.
However, in the context of a changing climate, there is an urgent need to develop more
precise models that can adapt to varying weather conditions, thereby enabling the more
effective utilization of passive elements [15]. This underscores the necessity of integrating
artificial intelligence to predict climate risks and optimize passive solutions.

Studies [38] highlight the significance of such passive measures, such as thermographic
and building life cycle optimization, within the framework of Near Zero Energy Build-
ings (NZEBs). The application of AI aids in predicting future energy consumption and
optimizing energy management, which is crucial for minimizing energy loss.

Study [47] examines the application of AI and thermography to assess heat loss
through building envelopes. The utilization of drones and infrared cameras enables the
identification of heat-loss areas, facilitating the development of targeted strategies to
enhance energy efficiency.

Additionally, a study [48] investigates the application of machine learning algorithms
to analyze the thermophysical performance of ventilated facades (VFs) and predict heat
fluxes. This research underscores the significance of machine learning in modeling building
behavior under varying temperature and structural parameters, thereby contributing to
the development of more accurate and adaptive energy-consumption models.

Therefore, the integration of AI and ML with passive measures, such as bioclimatic
design, thermography and building life cycle optimization, is essential for enhancing
energy efficiency and building resilience in the face of a changing climate.

3.1.5. Ventilation Systems and AI

The application of artificial intelligence and big data to optimize ventilation systems
and predict energy consumption has emerged as a key area of research aimed at reducing
the carbon footprint of buildings and enhancing their sustainability [49]. Optimizing
ventilation systems is particularly important for sustainable construction in the context
of a changing climate. A study [50] illustrates the use of machine learning models to
forecast the cooling load and energy consumption of buildings, enabling an evaluation
of the effectiveness of various ventilation management strategies in high-rise structures.
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The findings indicate that employing optimal ventilation systems can significantly enhance
energy efficiency, particularly during transitional seasons.

Mechanical ventilation and air conditioning systems constitute over half of the energy
costs associated with buildings [51], and climate change is exacerbating this issue by
intensifying the connection between rising greenhouse gas emissions and fluctuating
weather patterns. One effective approach is to incorporate passive measures, particularly
in regions with hot climates. However, the variability of climate conditions necessitates
the adaptation of these measures to optimize the utilization of natural resources, such as
daylight and natural ventilation. This highlights the importance of effectively managing
building systems to regulate their performance.

Therefore, the integration of artificial intelligence, big data and passive measures
can enhance the energy efficiency of ventilation systems while simultaneously adapting
buildings to the impacts of climate change. This holistic approach ultimately contributes to
a significant reduction in their carbon footprint over the long term.

3.1.6. Carbon Footprint of Buildings and Structures

A significant challenge in the context of sustainable development is the substantial
contribution of buildings to global energy consumption and greenhouse gas emissions.
Buildings account for up to 50% of global energy consumption and around 30% of green-
house gas emissions, highlighting the urgent need to enhance their energy efficiency to
achieve sustainable development goals [52]. The application of artificial intelligence and
machine learning to predict energy efficiency, both at the individual building level and
across urban areas, has emerged as a crucial strategy for solving these issues. Research in-
dicates that accurately predicting energy consumption requires taking into account climate
change factors and the functional characteristics of buildings [53].

Despite advancements in AI applications, the prediction of energy efficiency at the city
level remains insufficiently explored, particularly regarding the interactions among vari-
ous spatial functions and climate scenarios [52]. Modern research indicates that machine
learning (ML) and artificial intelligence (AI) can significantly enhance energy consumption
management and reduce the carbon footprint of buildings. For instance, in smart and
energy-efficient buildings (SEEs), ML-based control systems allow thermal comfort and
energy consumption to be effectively balanced [54]. Prediction models utilizing ML and
genetic algorithms can improve the energy efficiency of existing buildings by analyzing
historical data [55], including taking into account climate change forecasting [56]. Addi-
tionally, the application of multi-criteria optimization techniques for assessing the thermal
performance of buildings further underscores the critical role of AI in adapting structures
to shifting climatic conditions [57].

A significant innovation in building energy management is the application of artificial
intelligence (AI) and cloud technologies to automate energy consumption processes, for
example, using time series data [58]. These systems not only optimize energy consumption
but also identify anomalies, producing tailored reports for various stakeholders [59]. This
integration contributes to more efficient energy utilization and a reduction in carbon
emissions [60].

Building life cycle optimization techniques that leverage artificial intelligence (AI) and
digital technologies are employed to minimize the overall environmental impact, including
energy consumption and carbon emissions, at every stage of the life cycle—from design to
operation and disposal [40]. These approaches are crucial for achieving sustainability in
the construction and operation of buildings, which is particularly important in the context
of global climate change.

3.1.7. Adaptation of Buildings to Climate Change

Other studies focus on the adaptation of buildings to specific climatic conditions. For
example, the use of XGBoost and genetic optimization algorithms, due to their ability
to accurately predict building performance with respect to multiple parameters, such as
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thermal comfort, energy efficiency, structural parameters and daylight levels, helps to
improve thermal insulation and natural lighting in tropical regions. It highlights the need
of climate-adapted solutions to improve building energy efficiency [61].

XGBoost, learned from historical data, provides high accuracy in modeling the build-
ing response to different climatic conditions, allowing for the adaptation of design solutions
to the specific weather conditions of the tropical region. As a result, the combined applica-
tion of XGBoost and genetic optimization allowed for the creation of an integrated structure
capable of adapting and improving design solutions, as confirmed by the high R² values
(0.95 for point blocks and 0.87 for slab blocks). The above indicates the high predictive
accuracy of the models adapted to tropical climatic conditions.

The adaptation of building management systems to changing climatic conditions is
also an important area of research. For example, the use of machine learning to predict
thermal loads and model thermodynamic characteristics of buildings helps to significantly
reduce their energy consumption [62]. Predicting changes in climate conditions using
explainable AI and adapting control systems to these changes are found to be important
for maintaining energy efficiency [63].

Research also highlights the importance of reliability, safety and climate change adap-
tation in building design, which reinforces the importance of implementing AI to effectively
manage these factors [54]. Optimizing the energy efficiency of buildings in the face of
climate change becomes a key challenge. For instance, a study [55] introduces an energy-
prediction model that utilizes ML and genetic algorithms to enhance the energy efficiency
of existing buildings based on historical energy consumption and weather data. Similarly,
study [56] emphasizes the need to incorporate climate scenarios in building design to
optimize parameters, such as insulation thickness, to improve their energy efficiency.

Study [63] significantly enhances our understanding of the effects of climate change on
building energy consumption. An explainable AI (XAI) model was employed to predict en-
ergy usage under various climate scenarios, including “business-as-usual” and sustainable
energy transition scenarios. The findings indicate that climate change could substantially
increase cooling energy costs, underscoring the need for adaptation measures to mitigate
adverse economic and environmental consequences.

Thus, studies emphasize the important role of applying AI and ML to predict climate
change and adapt building systems, ensuring buildings resilience in a changing climate [61].

3.1.8. Energy Efficiency and Thermal Comfort

The optimization of heating, ventilation and air conditioning (HVAC) systems through
the application of neural networks facilitates an effective balance between energy savings
and the maintenance of thermal comfort within buildings [28]. Adaptive AI systems that
can learn from real-world data are crucial for the development of sustainable buildings in
the future, as they can automatically adjust HVAC parameters in response to fluctuations
in the external environment and evolving user needs [39].

Research [54] focuses on modern control systems for smart and energy-efficient build-
ings (SEEs), where the balance between minimizing energy consumption with the mainte-
nance of comfortable indoor temperatures is a central concern. Machine learning techniques,
including supervised, unsupervised and reinforcement learning methods are actively em-
ployed to achieve this balance.

The integration of physical simulation and artificial intelligence to predict energy consump-
tion across various climate scenarios not only facilitates the optimization of energy costs but
also enhances the thermal comfort level within buildings [27]. For instance, precise predictions
derived from AI models enable better adaptation of indoor conditions to a changing climate,
thereby maintaining comfort while reducing cooling and heating expenses.

The study conducted by [62] highlights the significance of selecting optimal parameters
for window structures, which allows for improving thermal insulation and subsequently
reduces energy consumption while maintaining a comfortable indoor temperature. This
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underscores how contemporary machine learning techniques contribute to developing
energy-efficient solutions that balance resource conservation with user comfort.

3.1.9. Energy Efficiency of Buildings in the Context of Sustainable Development and
Financial Efficiency

The trend of utilizing artificial intelligence to predict and optimize energy consumption
is steadily gaining momentum. However, the slow adoption of these technologies may
result in substantial economic losses, underscoring the importance of expediting their
integration into the construction industry [41]. The implementation of energy-efficient
solutions is increasingly recognized not only as an environmental necessity but also as an
economically reasonable step for sustainable development.

A study [49] investigates the challenges and opportunities associated with the ap-
plication of big data, artificial intelligence (AI) and Internet of Things (IoT) technologies
to enhance the energy efficiency and sustainability of buildings in Europe. The research
highlights the need for technology integration to meet the requirements of policy, business
and technology, emphasizing the importance of coordinating these elements for a successful
transition to sustainable building practices.

Particular emphasis is placed on the role of digitalization and the application of artifi-
cial intelligence (AI) throughout all stages of the building life cycle from design to operation
and renovation, which is especially important for developing countries [14]. Digital tech-
nologies, such as Building Information Modeling (BIM) and Building Management Systems
(BMS), can significantly enhance resource efficiency and minimize the environmental im-
pact. These technologies are increasingly recognized as an important element of sustainable
construction, providing both economic advantages and reductions in the carbon footprint.

The integration of AI and the ML into the design and operation of buildings not only
improves energy efficiency but also increases resilience to climate change, positioning these
technologies as essential components of the future building industry. Nevertheless, there is
still a need for further investigation of the practical aspects of their integration, as well as
an assessment of their long-term economic impacts and contribution to sustainable urban
development [64].

Current research demonstrates that green technologies and sustainable construction
play an important role in the face of climate change. For instance, study [61] proposed an
integrated platform for predicting and optimizing the performance of residential build-
ings in tropical climates, utilizing machine learning (XGBoost) and genetic optimization
algorithms. Particular attention is paid to improving thermal insulation and optimizing
the use of natural light, which confirms the importance of adapting building materials and
structures to improve energy efficiency.

A study [41] highlights the economic importance of the rapid implementation of
energy-efficient technologies. Delayed implementation could result in billions of euros
in lost opportunities and additional expenses linked to rising energy consumption. This
underscores the necessity of actively utilizing AI and digital solutions to reduce costs and
enhance resilience in the face of a climate change.

3.2. Improving Energy Efficiency in Transport and e-Mobility

This topic encompasses a broad spectrum of issues, ranging from optimizing energy
consumption in transportation systems to developing infrastructure for charging electric
vehicles. A key area of research is the application of artificial intelligence and machine
learning to enhance the energy efficiency and safety of vehicles, particularly in hybrid and
autonomous transportation systems.

Studies indicate that one of the most promising areas is the use of AI to predict vessel
arrival times (ETA) in maritime logistics, which contributes to reduce greenhouse gas
emissions and improves energy efficiency in international transportation [65]. Optimizing
the energy efficiency of shipping and minimizing the carbon footprint are key priorities
in this field. A study [66] highlights the use of big data and machine learning to enhance
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fuel efficiency in large ships, marking a step towards more sustainable transportation
solutions. Similar approaches are also applicable to land transportation, particularly for
electric vehicles and hybrid systems.

The application of machine learning is being actively utilized to enhance the energy
efficiency of vehicles. A study [67] indicates that intelligent transportation systems have the
potential to reduce CO2 emissions by 60%. Specifically, AI can optimize fuel consumption
in hybrid transportation systems, leading to significant reductions in energy costs and
improved environmental performance, and this allows for the more efficient use of un-
manned aerial vehicles [68]. Research [69] focuses on developing a machine learning-based
hybrid architecture to predict the battery health of electric vehicles, which is crucial for
extending battery life and optimizing energy consumption, ultimately resulting in more
efficient electric vehicle operation. This approach is also being explored in transportation
logistics, where AI helps to optimize routes and forecast energy consumption [19].

Studies also demonstrate the significant role of electric vehicles in urban energy strate-
gies. The adoption of electric vehicles helps to reduce energy consumption and carbon
dioxide emissions, which is crucial for sustainable urban development [70]. Furthermore,
research, such as [71], explores the broader integration of AI and IoT into the urban in-
frastructure, where smart systems can optimize energy management in transportation,
contributing to more sustainable cities. Additionally, the energy-demand analysis in the
study by [72] highlights key aspects of managing energy demand in the transportation sec-
tor. As energy demand for charging electric vehicles increases, efficient energy management
becomes essential to prevent overloading the power grid.

Study [73] utilizes machine learning to map the drivetrain efficiency of electric vehicles,
enhancing energy management and predicting energy efficiency. This helps to improve
energy management and predict energy efficiency, contributes to reduced fuel costs and
accelerates the shift towards more sustainable transportation solutions. Additionally, the
use of AI and ML to predict and optimize thermal and cooling loads in electric vehicles
further improves their energy efficiency and reduces operating costs.

The safety of autonomous vehicles, alongside their energy efficiency, is another crucial
area of research. AI technologies have been applied to enhance the safety management of
autonomous vehicles, improving their reliability and reducing the likelihood of accidents
by better predicting critical situations [74].

Thus, key trends in improving energy efficiency in transport include the application
of AI and machine learning to optimize energy consumption in both land and maritime
transportation systems, as well as expanding the use of electric vehicles in cities as a tool
to achieve energy sustainability. Additionally, there is an increasing focus on developing
charging infrastructure and the management of transport networks powered by renewable
energy sources.

3.3. AI in Sustainable Manufacturing and Industrial Automation

The integration of artificial intelligence in industrial automation and sustainable
manufacturing is becoming a crucial strategy for optimizing production processes, reducing
energy consumption and minimizing carbon footprints. The implementation of AI enables
predictive maintenance and energy consumption management and fosters automation,
leading to increased productivity and sustainability across various industrial sectors.

A key focus area is the implementation of AI for predicting and optimizing energy
consumption. For instance, machine learning is employed to enhance energy-consumption
efficiency in logistics and industrial settings, aiming to minimize carbon footprints and
optimize resource utilization [75]. However, a study [76] showed that R&D expenditures
are only effective in reducing CO2 in low-CO2-emitting countries, and conversely, patent
applications contribute to higher CO2 emissions.

Studies emphasize the importance of using AI to manage energy consumption in
manufacturing processes to improve sustainability and efficiency [77]. In addition, Internet
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of Things (IoT) and AI technologies can significantly improve automation in industrial
buildings, leading to lower energy costs and improved overall energy efficiency [34].

The application of AI significantly reduces energy intensity by optimizing production
processes and minimizing energy consumption [78]. Economies of scale are also crucial:
large enterprises that have integrated AI technologies achieve higher economic efficiency
and reduce energy intensity, highlighting the potential of AI to enhance the sustainability
of industrial production. However, reliable methods suitable for all levels of production
have not yet been sufficiently developed [79].

In addition to industrial enterprises, AI enhances household energy management
through the implementation of home energy management (HEM) systems [80]. These
systems optimize energy usage by employing advanced meta-heuristic algorithms, such as
Social Spider Algorithm (SSA) and Strawberry Algorithm (SWA), which effectively reduce
energy costs and peak loads.

AI also plays a crucial role in managing carbon dioxide emissions in the industrial
sector. Specifically, AI technologies are utilized to monitor and control CO2 emissions,
which contributes to the achievement of carbon-footprint-reduction targets [81]. Further-
more, AI plays an important role in the integration of industrial systems with renewable
energy sources, enabling the optimization of resource allocation and real-time energy
management [82], which contributes to environmental sustainability [83].

The transportation industry remains a major source of emissions, which requires the
implementation of intelligent systems to improve energy efficiency. Since 2016, with the
increasing popularity of deep learning, 219 patents focused on energy management, sus-
tainable driving and behavior optimization applied, of which more than 70% are registered
in China [84].

Research indicates that AI can substantially reduce inefficient energy usage, for in-
stance, by automatically adjusting equipment operation depending on demand levels [85]
or fuel economy in the maritime industry [86]. Conscious energy utilization enhanced by
AI mechanisms [87] promotes sustainable development by helping businesses reduce their
carbon emissions and increase the environmental responsibility of enterprises [88].

One promising area is the application of AI in agriculture to enhance the sustainability
and energy efficiency of agricultural production. In this sector, AI facilitates the opti-
mization of resource consumption, improves harvesting processes and enhances irrigation
management, ultimately reducing the carbon footprint and increasing the environmental
sustainability of agricultural production [89]. Additionally, AI is employed to optimize
production processes and reduce energy costs, thereby increasing the sustainability and
productivity of agribusinesses. AI technologies can automate processes related to the
management of agricultural resources, improving their efficiency and minimizing environ-
mental impacts, including through post-combustion carbon capture [90].

Predictive maintenance is emerging as one of the key application areas of AI in the in-
dustrial sector. Specifically, AI allows industrial enterprises not only to automate processes
but also to implement predictive maintenance systems, which significantly reduces repair
costs and extends equipment lifespan, as well as buildings [91]. In this context, predictive
analytics is extensively employed to detect potential breakdowns in advance, thereby
avoiding costly downtime [75]. Consequently, this approach enhances the resilience of
industrial systems while also contributing to reductions in energy consumption.

A particular area of research is the application of AI to enhance resource efficiency in
manufacturing systems. This encompasses both material usage optimization and waste re-
duction, resulting in leaner and more environmentally responsible production practices [75].
Furthermore, AI facilitates the development of intelligent control systems that adapt to
changing production conditions and automatically adjust processes to achieve maximum
efficiency [92].
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3.4. Energy Efficiency in Smart Grids

The application of artificial intelligence and machine learning has emerged as a crucial
element in enhancing energy efficiency within smart grids. Key components include real-
time demand forecasting and management, the integration of distributed energy resources,
such as solar and wind power, and process automation, all of which are essential for the
advancement of smart grid technology.

Artificial intelligence plays a key role in optimizing energy consumption within
smart grids, improving power system management through real-time demand forecasting
and increasing grid resilience. For instance, the application of AI techniques, such as
machine learning and data analytics, allows for more precise predictions of energy demand
and enables immediate responses to fluctuations in the load, thereby reducing costs and
improving the efficiency of power systems [93].

An important aspect of the efficient integration of renewable energy sources into smart
grids is the ability to predict their power output. Study [4] examines various methods
for predicting solar radiation and photovoltaic (PV) power using machine learning and
deep learning techniques. These methods aim to reduce uncertainty and improve energy
management within smart grids. Demand-side management techniques combined with
machine learning also help to optimize the operation of distributed energy sources, such as
solar panels and wind turbines, thereby increasing the share of renewable energy sources
within the overall energy system [94]. Artificial intelligence is employed to manage dis-
tributed energy resources, enabling efficient predictions of energy intensity and optimizing
the utilization of renewable sources, like solar and wind energy [95]. A study [96] inves-
tigates the integration of distributed energy sources, such as solar panels, utilizing AI to
effectively manage energy consumption and distribution within a proposed nanogram and
microgrid architecture, thereby improving system stability.

Machine learning techniques, such as the Multivariate Temporal Fusion Transformer,
enhance the accuracy of energy-demand forecasting [9]. This forecasting accuracy is
essential for optimizing energy flow management, particularly for variable energy sources
like solar installations.

The Internet of Energy (IoE) plays a crucial role in smart grids, allowing devices
and systems to be connected to monitor and manage energy consumption. A study [97]
investigates the combined application of IoE and ML to optimize energy-consumption
management and enhance the overall energy efficiency of the grid. This includes load
forecasting, system state monitoring and the automation of energy consumption manage-
ment processes.

Carbon forecasting is increasingly recognized as a vital component of smart grids, as it
impacts investment decisions and risk management. Real-time forecasting and distributed
sources energy management significantly reduce carbon emissions and contribute to the
development of sustainable energy infrastructure [93]. A study [98] employs machine
learning to predict the carbon emissions of corporations, enabling investors to make more
informed decisions in response to emerging environmental regulations.

The focus of research is on energy-demand management and the development of
cost-effective models for smart grids. A study [99] proposes a blockchain and artificial
intelligence-based “cap and trade” model for demand management, utilizing AI to incen-
tivize consumers to save energy. This is accomplished by introducing a system of energy
credits that can be traded if energy consumption remains below a specified limit. Intelligent
AI algorithms, such as predictive analytics and optimization algorithms, enable power
grids to efficiently allocate resources and manage electricity demand and consumption,
thereby minimizing peak loads and ensuring grid stability [100]. Additionally, a study [101]
presents an open-access decision support system (NESSI) for energy consumption and
generation planning at both the household and neighborhood levels. This system uses AI
and machine learning to calculate and optimize energy consumption and forecast demand.

The utilization of Information and Communication Technology (ICT) platforms for
energy consumption management in buildings is emerging as a significant trend within
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smart grids. ICT platforms enable the collection and processing of massive amounts
of data in real time, which is critical to accurately monitor, analyze and predict energy
consumption. ICT platforms provide smart grids with the analytics they need to respond
instantly to changes in demand and manage loads to prevent congestion and improve the
efficiency of energy distribution. A study [77] provides a real-world example of an ICT
platform employed to predict and optimize energy consumption, leveraging data collected
from sensors in smart buildings. This approach results in enhanced energy efficiency
and sustainability.

Internet of Things (IoT) technology facilitates real-time data collection and processing,
thereby enabling the automation of energy management processes both at the micro-grid
level [102] and at the level of smart energy infrastructure in general [103]. A study [104]
demonstrates the potential of utilizing IoT data to predict peak energy demand and op-
timize energy consumption across various types of buildings. This capability enhances
energy management flexibility and reduces the overall load on the grid.

As a result of the conducted research, the following most effective methods for man-
aging distributed energy resources (DER) can be identified:

1. Using AI to predict and optimize DERs. Methods, such as Temporal Fusion Trans-
former, improve forecasting accuracy, which is especially important for DERs with
variable capacity, such as solar and wind installations. High-quality forecasts mini-
mize load peaks and improve grid stability.

2. Demand management using AI and blockchain. Demand management allows users
to adjust energy consumption based on grid conditions and helps prevent grid con-
gestion, especially during periods of high demand, by economically incentivizing
users to reduce consumption. Thus, DER owners can adapt consumption and even
offer surplus energy to the market.

3. IoE and IoT for monitoring and managing DER. IoE and IoT devices collect data in
real time, allowing for rapid monitoring of the network status and when using AI
together, automatically adjust energy consumption.

4. ICT platforms for data collection and analysis in smart grids. ICT enables the collection
and processing of large amounts of real-time data from DERs, which is critical for
accurate demand management and prediction.

5. Microgrids and nano-grids allow DERs to operate autonomously, providing energy
to the local community or sites, while being able to connect to the main grid for
additional flexibility.

3.5. Climate Change Forecasting and Adaptation of Energy Systems

Current research increasingly employs mathematical models and machine learning
to predict the impact of climate change on energy systems. These technologies enable the
consideration of various climate scenarios, facilitating assessments of future energy needs
and potential risks [105]. Mathematical models and machine learning make it possible not
only to predict but also to optimize energy systems by developing adaptive algorithms that
dynamically adjust energy strategies, taking into account changing climate conditions in
real time.

For instance, the application of machine learning techniques, such as multi-criteria
optimization and Explainable AI (XAI), enables the assessment of the impact of various
climate scenarios on energy consumption in buildings and the development of adaptation
strategies [106], which is important for understanding and informing decisions to reduce
climate risk.

Additionally, ref. [107] discusses the use of machine learning-based models and dynamic
panel estimation to manage nonlinear and chaotic systems related to climate vulnerability and
energy infrastructure. Taking into account non-linear relationships between climate factors and
energy consumption helps to improve the accuracy of long-term forecasts.

A significant area of research is the adaptation of infrastructure to the new conditions
brought about by climate change [108]. Study [39] explores building adaptation through
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the use of AI and digital twins to predict changes in climate conditions and adjust energy
systems accordingly. Meanwhile, [50] focuses on forecasting changes in building cooling
loads and energy consumption to develop long-term adaptation strategies and optimize
the energy system infrastructure in response to climate change. Research indicates that
employing climate models and optimization techniques can lead to a reduction in energy
consumption in buildings by up to 54% when adapting to the climate change scenario
SSP585 [27]. Additionally, studies [109] concentrate on regional approaches to adapting
energy systems to climate change, which confirms the growing overall interest in the impact
of climate change on energy systems that has been observed in recent years [110]. There are
also investigations into the adaptation of energy systems in arid regions, where increased
energy consumption necessitates the implementation of sustainable and energy-efficient
solutions [44].

The use of machine learning not only makes it easier to predict energy demand but also
takes into account changes in the structure of electricity demand. For instance, electricity
demand forecasting employing techniques, such as Blade Element Momentum (BEM) and
Explainable AI, enables the prediction of changes in energy consumption depending on
weather conditions and adapting energy systems to minimize losses [111]. Furthermore,
a study [112] reveals the adaptation of energy systems to climate change through fault
detection in the power electronic circuits of the wind turbine system, allowing it to adjust to
changing demand in the face of population growth and increasing extreme weather events.

Research underscores the necessity of developing strategies to minimize the negative
consequences of climate change on energy systems. The integration of AI and quantum
computing technologies is enhancing the resilience of energy networks, improving the
management of renewable energy and reducing carbon emissions and carbon dioxide
removal (CDR) [113]. These advanced technologies facilitate the development of strategies
that enable energy systems to adapt to evolving conditions and maintain stable operations
amidst climate uncertainties.

A crucial area of research is the development and implementation of climate-resilient
solutions for urban and industrial systems [31]. Forecasting climate change and its ef-
fects on urban infrastructure is essential for creating climate-resilient cities that can adapt
to changing conditions and minimize adverse impacts on energy systems [114]. Such
strategies encompass the integration of smart grids and renewable energy sources, which
contribute to enhanced energy consumption efficiency and a reduction in carbon emissions.

3.6. Machine Learning for Water Resource Management

The use of Intelligent Energy Monitoring Systems (IEMSs) to manage glacial ecosystems
demonstrates how machine learning (ML) and artificial intelligence (AI) can be powerful
tools in managing water resources in the face of climate change [115]. IEMS applies remote
sensing technologies, sophisticated sensors and ML algorithms to track real-time changes,
which opens up opportunities to better understand and conserve glacial ecosystems.

Approaches to improving energy efficiency in the shipping industry based on behav-
ioral change and operator involvement provide meaningful insights for the application
of AI and ML in water resource management [116]. The use of autonomous ML-based
systems for data collection and analysis in the shipping industry will overcome the lack
of standardization, enabling more informed decisions and optimizing the use of limited
water resources.

One of the primary applications of machine learning in water resource management
is the optimization of membrane distillation processes [85]. Studies show that ML, which
optimizes key system parameters and forecasts its behavior with high accuracy, can be used
to improve the accuracy of performance forecasting of membrane distillation processes.
It helps to reduce energy costs and improve desalination efficiency [117]. Also, machine
learning algorithms help to accurately model water flow, forecast pollution and take
into account the impact of micropollutants on the treatment and desalination process.
Modern technologies make it possible to improve membrane material selection, automate
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water quality control, optimize distillation processes and minimize energy consumption.
The use of AI and machine learning helps to minimize the amount of data required for
process modeling and optimizes the tuning of system parameters, which increases the
interpretability of models and process stability [118].

Machine learning (ML) contributes to the optimization of solar desalination systems
by reducing energy consumption and increasing the water production volume [96]. Specifi-
cally, ML has been employed to predict and optimize the performance of solar membrane
desalination systems, in order to minimize energy consumption through the more precise
selection of system parameters [117].

Machine learning is also actively employed to address global issues related to water
scarcity. The use of AI and machine learning for energy consumption management in the
textile industry provides useful approaches for optimizing water resources [119]. Innova-
tive technologies, such as bioreactors [120] and solar-powered water purification systems,
are being improved through machine learning algorithms that help minimize energy con-
sumption and improve productivity [121], particularly within water treatment systems,
which is crucial for regions facing water shortages. Study [122] examines the use of IoT
and machine learning for monitoring ocean acidity, while [123] explores the application of
artificial intelligence and big data for water resource monitoring through the use of sensors
on the plants, which helps manage water resources as part of global initiatives.

Machine learning not only facilitates the optimization of treatment processes but also
aids in predicting water resource demand. By analyzing data on climate, demographics
and water consumption, accurate forecasts are generated to help the development of
effective water management strategies. This capability is particularly significant for both
industry and agriculture, as precise predictions can help minimize water losses and enhance
planning efforts [124]. Additionally, [125] describes innovative technologies for water
consumption monitoring that employ wireless systems and optical sensors, which can be
integrated with ML to optimize water consumption and management.

3.7. AI in Renewable Energy Sources

One of the key trends in renewable energy is the application of AI to enhance the
efficiency of geothermal heat pumps. Research indicates that AI can help optimize the
performance of these systems through more accurate heat load predictions, real-time data
analysis and automation of controls. The use of machine learning makes it possible to
better predict the output temperatures from heat pumps [126] and regulates temperature
flows [96], thereby improving control mechanisms and reducing operating costs. Addition-
ally, various approaches are being explored to optimize pump parameters to improve their
energy efficiency [127].

AI not only helps in predicting energy consumption but also facilitates the manage-
ment of interactions between the grid and renewable energy sources. The application
of machine learning algorithms enhances the accuracy of energy consumption forecasts,
thereby optimizing the management of energy resources [6]. This capability is particularly
crucial for energy systems operating with variable renewable sources, such as solar and
wind energy [5]. For instance, study [128] explores the processes of the integration of solar
energy into conventional power systems, while another study [129] analyzes the prediction
of solar radiation and the performance of solar panels, including strategies for preventing
panel failures.

AI also plays a crucial role in the integration of various renewable energy sources into
energy networks. Green AI and digitalization moving to low-power peripherals, such as
TinyML, support the efficient management of renewable energy [130]. The application of
AI techniques enhances grid stability, improves energy resource management and reduces
carbon emissions. Studies [131] investigate strategies for incorporating renewable sources,
such as solar and wind energy, into existing urban energy systems. Additionally, the use of
AI in wind energy systems improves power forecasts under varying weather conditions,
thereby increasing the overall stability of the grid [111]. Furthermore, AI technologies
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enable the real-time management of renewable sources, which reduces the grid load and
improves the interaction between consumers and energy producers [103].

A crucial aspect of applying AI to renewable energy sources is the creation of models
that take into account the instability of natural conditions and assist in predicting energy
output [132]. For instance, wind turbines are influenced by fluctuating weather conditions
and AI can accurately predict how these changes will impact their performance [111].
Additionally, the use of AI for fault detection enhances the reliability and efficiency of wind
energy systems [112]. AI also aids in predicting geothermal resources, enabling a more
efficient utilization of their potential for energy supply [126].

Research indicates that utilizing AI to manage renewable energy sources enhances
the resilience of power systems in the face of climate change and other unforeseen cir-
cumstances. Predictive models developed through AI allow us to assess risks and make
decisions under conditions of uncertainty, thereby improving the stability of the power
system and reducing its dependence from traditional energy sources [22].

3.8. Energy Transition and Decarbonization Through Innovative Technologies

One of the primary challenges of the current energy transition is achieving decar-
bonization through the integration of renewable energy sources (RESs), such as solar, wind
and geothermal energy. For instance, the implementation of smart grids equipped with
AI can enhance the stability of energy systems and minimize energy losses through more
accurate forecasting and resource management [22].

Artificial intelligence (AI) plays a crucial role in managing energy consumption, op-
timizing energy systems and minimizing CO2 emissions. The use of machine learning
and big data analytics enables real-time predictions of energy consumption, improves the
energy efficiency of industrial processes and reduces the overall carbon footprint [133].
This is particularly relevant for the electronics industry sector, where optimizing energy
management can significantly reduce emissions [134].

Blockchain technology is actively being investigated as an innovative tool for man-
aging distributed energy sources, fostering transparency and enhancing the security of
transactions within energy systems. For instance, blockchain facilitates the creation of
sustainable energy ecosystems by enabling distributed users to engage in renewable energy
markets REM, thereby promoting the growth of localized clean energy production and
contributing to the reduction in carbon emissions.

Cyber-Physical Systems (CPSs) and Energy Management Automation: CPSs play
a crucial role in optimizing energy resource management, particularly within the trans-
portation and industrial sectors. These systems enable more the efficient utilization of
energy resources and support the transition to sustainable technologies, including the
development of decentralized energy systems [102]. They are actively employed to manage
the integration of renewable sources into energy systems, effectively reducing the carbon
footprint by enhancing the accuracy of control and monitoring processes.

With the energy crisis, in the context of accelerated climate change, conflict in Ukraine
and the past 2019 coronavirus pandemic, carbon emissions are growing rapidly [135],
requiring the use of innovative technologies to reduce these emissions [136].

Artificial intelligence (AI) and machine learning are helping to model investment
scenarios for new energy technologies, such as wind and solar power, and evaluate their
economic and environmental impacts. Research [1] underscores the necessity for eco-
nomically reasonable investments in the energy transition, highlighting the significance
of developing strategies that integrate renewable energy sources that include renewable
energy, which will contribute to the transition to a low-carbon economy.

3.9. The Carbon Footprint of Large AI Language Models

Despite the significant potential of AI and ML in promoting energy conservation, a
critical concern is the high carbon footprint associated with the training and operation of
large language models (LLMs). These models demand substantial computational resources
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and consume considerable amounts of energy [137]. The training of LLMs, especially
for natural language processing tasks, involves the repeated processing of vast datasets,
which significantly contributes to CO2 emissions [18]. This presents a challenge for re-
searchers and AI developers in finding ways to minimize environmental losses, despite
the fact that artificial intelligence can support environmental sustainability [138] and solve
environmental problems.

One proposed approach to reducing the carbon footprint of language models is to
adopt more energy-efficient computing architectures and to optimize learning algorithms,
thereby reducing the number of computational operations required [139].

Methods to reduce energy consumption by employing specialized hardware solu-
tions and utilizing renewable energy sources for data center operations are also being
actively explored [19]. Some studies propose integrating green energy and implementing
energy-efficient solutions to support AI computing, which contributes to reducing carbon
emissions [18].

Another important aspect is the use of more energy-efficient hardware for computa-
tional tasks. For instance, some studies suggest the use of hardware accelerators, such as
specialized processors and graphics processing units (GPUs), to reduce power consumption
during the training and implementation of language models [19].

Study [92] highlights that the computational resources required to train and operate
large language models (LLMs) consume substantial amounts of energy, contributing to
carbon emissions. Research indicates that reducing the training time through more ef-
ficient allocation of computational resources can significantly reduce the overall carbon
footprint [138]. This can be achieved by developing new algorithms that can minimize the
number of repetitive operations during the training process.

Work [130] explores the potential of using Green AI technologies to minimize energy
consumption, such as shifting computation from the cloud to edge computing. This
approach can reduce the amount of data transmitted over the network and decrease the
computational demands for training and deploying models.

3.10. Post-Combustion Carbon Capture and Its Optimization Using Machine Learning

Global warming caused by increasing carbon emissions requires immediate action.
Study [140], emphasizes the need to develop global policies with specific targets to stabilize
atmospheric carbon, including low-carbon technologies and improved energy efficiency.

Post-combustion carbon capture (PCCC) is a complex process that requires significant
energy input. The application of machine learning for optimizing these processes is becom-
ing an urgent task, as it can significantly enhance energy efficiency, reduce operational costs
and reduce the carbon footprint of industrial enterprises [2]. Some studies have employed
machine learning to improve modeling and prediction, enabling the precise identifica-
tion of parameters that need adjustment for the optimal performance of carbon-capture
systems [141].

One of the main challenges in implementing post-combustion carbon capture (PCCC)
is its high energy intensity, which reduces its economic efficiency. Machine learning can
optimize CO2-absorption processes by improving process control and minimizing heat loss,
thereby reducing energy consumption. Specifically, machine learning can help identify the
most efficient operating conditions for carbon filters and adsorbents, maximizing carbon
dioxide capture [90].

The successful implementation of carbon capture technologies necessitates their in-
tegration into existing industrial systems, which account for 50% of the world’s energy
consumption [142], such as steel and cement production, which are significant sources of
CO2 emissions [143]. In this context, machine learning optimization (ML) plays a crucial role
by predicting how variations in operating parameters impact the performance of carbon-
capture systems. This capability allows for the flexible integration of post-combustion
carbon capture (PCCC) into production cycles without substantial losses in efficiency [113].
Some studies indicate that the application of ML models can not only enhance capture pro-
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cesses but also predict emissions at various stages of the production process, contributing
to a reduced carbon footprint during both the planning and operational phases [90].

Machine learning is also actively applied in the search for new materials and catalysts
that can enhance the efficiency of carbon capture. By simulating the behavior of materials
under various conditions, machine learning optimization (ML) accelerates the discovery of
innovative solutions [140]. This is particularly important in environments where traditional
carbon capture methods require significant energy inputs.

The study shows that the most promising way to improve the economic efficiency of
PCCC using AI and ML are integrated approaches, including the prediction of thermal fluc-
tuations and energy requirements using ML algorithms. It allows for the optimal regulation
of heat exchange and increases the efficiency of heat recovery; the modeling of new sorbents
at the molecular level, analysis and forecasting of their behavior under different conditions,
in order to find materials with the lowest energy requirements; the use of co-generative
materials with the lowest energy requirements; the use in co-generation facilities to manage
the balance between heat production for PCCC and real-time electricity generation; and
other economically feasible methods, including integration of renewable distributed energy
sources and the optimization of energy efficiency of the PCCC process itself.

3.11. Mitigating the Effects of Climate Change with AI

AI plays a crucial role in monitoring climate change and predicting its impacts.
Study [107] explores methods for monitoring climate vulnerability using AI, while [144]
applies AI to analyze vegetation and urban air data to help predict and model the effects of
climate change. These applications help to adapt energy-management strategies, enabling
more accurate predictions and the implementation of targeted climate mitigation measures
for energy systems and other industries [145].

A study [146] explores the use of drones and sensors to monitor climate change.
This technology enables quicker responses to environmental changes and supports the
development of strategies to adapt to evolving conditions.

An important aspect of climate change mitigation is the modernization of infrastruc-
ture with advanced energy-efficient technologies. For example, a study [39] explores the
use of AI to adapt buildings to climate change and enhance their energy efficiency. Addi-
tionally, AI is being employed in enterprises to optimize the use of renewable energy and
reduce CO2 emissions. These innovations not only make industrial facilities more resilient
to climate change but also significantly reduce their carbon footprint [147].

AI plays a critical role in predicting and managing climate risks. By utilizing machine
learning and big data, models can be developed to forecast the impact of climate change
on the infrastructure and energy supply. For instance, AI can predict energy-consumption
patterns based on weather conditions, enabling businesses and energy networks to better
adapt to climate risks [145]. Additionally, a study [141] explores the development of AI
algorithms for the prediction of carbon emission and energy system management, which
adjust their operations according to climate conditions, helping to mitigate the effects of
climate change.

3.12. Social, Economic and Political Aspects of Energy-Consumption Management

One of the key challenges for governments is to develop and implement effective poli-
cies that promote the adoption of renewable energy and reduce carbon dioxide emissions.
These efforts often involve programs that provide financial support for renewable energy
projects, subsidies for solar panel installations and the development of infrastructure for
electric vehicles [133]. A study [65] examines the role of international policies aimed at
reducing greenhouse gas emissions in the maritime industry. An important element of
government policy includes measures that encourage reductions in energy consumption in
various sectors of the economy, along with incentives for both citizens and businesses to
participate in energy-saving initiatives [148].
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An important aspect of government policy is regulating the transition to sustainable
energy. This includes implementing standards and regulations directed to reduce carbon
footprints and ensure the long-term sustainability of energy systems [149]. A study [1]
explores the role of support programs and investments in green technologies. Numerous
studies indicate that policies promoting improved energy efficiency can not only reduce
emissions but also stimulate economic growth by creating new jobs in the renewable energy
sector [150].

An important aspect of energy-consumption management is the social and economic
consequences of the implementation of renewable energy sources [34,108]. The transition
to sustainable energy can have a significant impact on social groups, especially workers
in traditional sectors, such as the coal industry, where the development of retraining and
support programs is required.

A critical role is played by programs to support socially vulnerable groups affected by
the increase in energy costs during the energy transition [151]. The results of study [152],
based on the analysis of carbon emission reductions during the COVID-19 pandemic, show
that planned economic slowdown and energy efficiency improvements can significantly
reduce carbon emissions.

Many national and international programs for energy-consumption management and
sustainable energy development are based on the UN Sustainable Development Goals
(SDGs) [153]. Policies focused on decarbonization and the transition to renewable energy
sources contribute directly to goals, such as reducing emissions (SDG 13—Climate Action,
combating climate change) and ensuring access to affordable, clean energy (SDG 7) [137].
A key component of these programs is promoting the increased use of renewable energy
sources, enhancing energy efficiency and developing more sustainable energy systems.
This requires developing strategies for engaging the private sector and international orga-
nizations to collaborate on SDG initiatives.

The issue of energy poverty remains critical in a number of regions, particularly in
the context the global energy crisis. A study [154] examines the role of policy in com-
bating energy poverty in the EU and the UK. The application of AI and ML allows for
the more precise identification of vulnerable households and the development of support
mechanisms, helping to reduce social inequality and expand access to energy resources.
Government programs are being aimed at lowering household energy consumption, pro-
moting energy-efficient technologies and providing financial assistance to low-income
households to improve their access to energy resources [151].

Our research shows that the interest in different topics fluctuated between 2011 and
2024. Figure 5 illustrates the distribution of topics based on the number of references in the
cited sources.

If we look at the dynamics over the years, the topics can be divided into different
trends: for some topics, the interest decreased, others just emerged and for some topics, the
interest was and still is high. For example, the topics of “Sustainable building and green
technologies with AI and ML application for energy efficiency in buildings”, “Climate
change prediction and adaptation of energy systems to climate change” and the “Social,
economic and political aspects of energy consumption management” maintained high
interest throughout the period from 2021 to 2024. In fact, interest in these areas even
increased in 2024.

For the topics “AI in renewable energy sources”, “Energy transition and decarboniza-
tion through innovative technologies” and “Climate change mitigation through AI”, interest
grew steadily each year, reaching its peak in 2024. In contrast, the topic “Improving energy
efficiency in transportation and e-mobility” saw its highest level of interest in 2021, after
which interest significantly declined. This trend is depicted in Figure 6.
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4. Discussions and Conclusions

The study focused on systematizing the existing scientific literature to identify sig-
nificant common themes and trends in the use of AI and ML tools in improving energy
efficiency in different sectors and countries, with a focus on addressing climate challenges,
such as reducing carbon emissions and optimizing resource use.

This literature review highlights substantial progress in the application of artificial
intelligence (AI) and machine learning (ML) techniques aimed at enhancing energy effi-
ciency and address climate change issues. A systematic analysis encompassing 237 research
papers and 388 patents reveals a notable upward trend in research and innovation, partic-
ularly over the past two years. The focus of this trend spans several domains, including
engineering, computer science and energy. These findings suggest a growing interest from
both academic and industrial sectors in using AI to solve urgent environmental challenges.

The literature review conducted allows us to draw several key conclusions regard-
ing the role and potential of AI and ML in improving energy efficiency and addressing
climate challenges.

One of the key trends of scientific interest observed over the last 5 years is the inte-
gration of artificial intelligence (AI) and machine learning (ML) in sustainable building
practices and green technologies. These technologies are particularly significant in urban
environments, as they contribute to mitigating the urban heat island effect and reducing
carbon emissions. The combination of physical simulations and AI predictive models
shows great potential for energy consumption optimization, particularly within heating,
ventilation and air conditioning (HVAC) systems. The results indicate that neural networks,
CNN-LSTM models and gradient-boosting methods, such as LightGBM and XGBoost,
can enhance the accuracy of energy consumption predictions, leading to improvements
in building energy efficiency by as much as 22.3%. This underscores the transformative
potential of AI in promoting sustainable urban development and green building practices.

The concept of the Internet of Energy (IoE), which is the integration of the Internet
of Things, cloud computing and big data analytics technologies to create smart and in-
tegrated energy grids, is currently a relevant and rapidly growing area of research and
practical application. The critical role of the IoE is to act as a bridge between the various
components of smart grids, ensuring their optimal performance by predicting energy
consumption, monitoring system health and automating control. IoE improves network
efficiency, reduces energy costs and makes the network adaptive and resilient to changes in
energy consumption.

The results also indicate the expanding role of artificial intelligence (AI) in smart
grids, where real-time data collected from Internet of Things (IoT) sensors, combined with
AI-based algorithms, improve energy distribution and load management. The integration
of renewable energy sources, such as solar and wind power, is particularly benefited by
AI’s capacity to predict energy generation and optimize resource distribution. Nevertheless,
these achievements are accompanied by challenges, including the maintenance of grid
stability and the need to ensure the scalability of AI-based solutions.

AI also has an important role to play in the integration of renewable energy, which is a
key factor in the global transition to a low-carbon economy. The ability of AI to manage
and predict energy consumption in intermittent renewable energy systems is an important
advantage. However, ensuring the reliability of these systems in a changing environment
remains a subject of active research.

Another significant topic for discussion is the application of artificial intelligence (AI)
in climate change mitigation. The predictive capabilities of AI are crucial for predicting
the impact of climate change on energy systems and for developing effective adaptation
strategies. The successful implementation of ML in post-combustion carbon capture (PCCC)
illustrates AI’s potential to enhance the efficiency of carbon capture processes, which is
essential for reducing industrial emissions. However, the economic feasibility of these
technologies remains a challenge due to their high energy consumption, emphasizing the
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need for further research on low-energy technologies and materials, as well as materials
science and chemistry.

Finally, policy and regulatory frameworks play an important role in supporting the
adoption of artificial intelligence (AI) in energy efficiency projects. The results indicate
that government initiatives, particularly those aligned with the United Nations Sustainable
Development Goals, serve as significant incentives for the utilization of renewable energy
sources and AI-based energy efficiency measures. However, energy poverty continues to
be a challenge in many regions, and AI has the potential to provide targeted solutions for
identifying vulnerable households and enhancing access to energy-efficient technologies.

Despite this progress, the review identified significant barriers to the adoption of AI in
energy efficiency projects, especially in transportation and industrial automation. While AI
and ML improve energy management and predictive maintenance in industrial sectors, the
high energy consumption of these technologies, especially large language models (LLMs),
poses a challenge. The carbon footprint associated with LLMs underscores the need to
develop more energy-efficient computing architectures and optimize learning algorithms
to reduce their environmental impact.

Limitations of the research. As with any research, this study has its limitations. It
primarily focused on technological aspects, particularly the influence of digital technologies
on energy efficiency and climate change. However, the long-term return on investment for
energy efficiency solutions, particularly in the context of environmentally friendly materials
and innovative methods, remains insufficiently explored. This gap restricts the economic
evaluation of such projects.

Furthermore, the majority of the studies and patents examined are primarily focused
on developed economies and major markets, including the United States, United Kingdom,
China and India. This concentration may constrain the applicability of the findings to other
regions, particularly low- and middle-income countries, where infrastructure and access to
technology can vary significantly.

Although artificial intelligence contributes to enhancing energy efficiency, our research
does not broadly address the carbon footprint associated with the training of large language
models and the AI implementation process itself. This is an important aspect in the context
of measuring the positive and negative effects of AI on climate change and requires more
detailed consideration and further research to comprehensively evaluate the impact of
technology on the environment.

Prospects for Future Research. Despite significant advancements in the application of
artificial intelligence and machine learning to improve energy efficiency, there are many
areas that require deeper research and development. One of the key areas for future inves-
tigation is the integration of AI and digital twins into the existing building infrastructure.
Practical examples are essential to illustrate the long-term economic and environmental
benefits of using these technologies, particularly in the context of climate change. Addi-
tionally, evaluating the long-term return on investment for energy-efficient solutions and
ecological materials remains a pressing concern that necessitates further analysis.

Another critical area of research is the integration of artificial intelligence with re-
newable energy sources and the development of methods for their optimal utilization
in industrial and urban systems. This encompasses the creation of adaptive models for
energy-consumption management in smart grids that are capable of taking into account
extreme climatic conditions. A promising direction in this field is the creation of integrated
solutions to improve the interaction among various renewable energy sources and their
integration into urban energy systems.

Particular attention should be paid to cybersecurity challenges in smart grids and
the development of sustainable solutions to prevent the risk of cyberattacks. The rapid
development of IoT technologies and the increasing number of connected devices require
the increased security and reliability of these systems. Additionally, research focused on
developing new energy-storage methods and integrating artificial intelligence with these
technologies to improve grid stability and reliability is also critical.



Energies 2024, 17, 5965 27 of 34

Additionally, a promising area for research is the development of standards and
protocols for evaluating the energy efficiency of various AI-controlled systems. This may
include the creation of metrics to assess the efficiency of automated industrial processes and
their adaptation across different industries. Furthermore, research is necessary to improve
water-management practices, particularly in regions vulnerable to climate risks, where
artificial intelligence can play a key role in ensuring the sustainability of water systems.

The integration of artificial intelligence with blockchain technology to manage dis-
tributed energy systems, particularly at the community and small business levels, repre-
sents a significant area for further research. This direction has the potential to support the
development of localized energy production and contribute to more sustainable energy
management models.

One of the pressing challenges is the reduction of the carbon footprint associated with
large AI language models. This requires research focused on developing more energy-
efficient computing architectures and learning algorithms that minimize energy costs.
Additionally, investigating the life cycle of language models from development to imple-
mentation and operation is essential for assessing their environmental impact.

Finally, research is essential to understand the socio-economic consequences of the
energy transition. It is important to investigate how these changes affect local communities,
the creation of jobs in the green economy and the development of retraining programs
for workers displaced from traditional sectors. Furthermore, the development of socially
oriented strategies and financial instruments to support sustainable development will help
minimize the negative consequences for vulnerable groups of the population.

Thus, future research on the application of artificial intelligence and machine learning
for enhancing energy efficiency necessitates an integrated approach focused on developing
technological solutions, enhancing the sustainability of energy systems and considering
socio-economic factors. Key priorities for the scientific community in the coming years
should include integrating renewable energy sources, improving system reliability and
cybersecurity and reducing the carbon footprint of AI technologies.
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A B S T R A C T   

There is a rapidly growing number of studies on transnational climate change mitigation technology (CCMT) 
diffusion. Most of these studies have adopted a bilateral perspective, treating countries as primary agents driving 
the diffusion process. However, CCMT diffusion typically arises from the interactions between firms and involves 
strong network effects. In this paper, we explore the global CCMT diffusion from a network perspective, with 
multinational corporations (MNCs) as network makers. We first propose a methodology to construct the global 
CCMT diffusion networks, leveraging CCMT-related patent data, intra-firm relationships, and business scales of 
the selected MNCs. We then calculate the network capital for each country, utilizing it as the input for the 
econometric analysis to investigate the network effects on CCMT development. The network statistical analysis 
reveals an uneven geographical distribution of network capital, underscoring the presence of global disparities in 
CCMT development. Moreover, the econometric analysis identifies significant network effects originating from 
linkage volumes and structural positionalities within the CCMT diffusion networks.   

1. Introduction 

An expanding coalition of countries, cities, firms, and institutions is 
collaboratively striving to cut greenhouse gas emissions to as close as 
zero by 2050 (IEA, 2021). However, achieving net-zero emissions by 
mid-century presents challenges primarily due to the magnitude of the 
fluxes (Allen et al., 2022; Arora and Mishra, 2021). There is a substantial 
emission gap between the projected emissions based on the Nationally 
Determined Contributions announced prior to COP26 and the emission 
levels necessary to align with modeled mitigation pathways that limit 
global warming to 1.5 ◦C or below 2 ◦C (Chen et al., 2022; ICPP, 2023). 
In this regard, accelerating the development and diffusion of CCMTs 
presents a strategic way to bridge the gap between political rhetoric and 
net-zero carbon reality (Herman, 2022; Probst et al., 2021; Vakulchuk 
et al., 2020; Wang et al., 2021). 

Several strands of literature have examined the drivers of CCMT 
development. On the one hand, some literature suggests that technology 
development is a path- and place-dependent process (Aguirre and Ibi
kunle, 2014; Martin, 2021; Monasterolo et al., 2019; Nelson and Winter, 
1982). This perspective emphasizes the significance of domestic factors 
such as policies (Popp et al., 2011) and social-technical configurations 
(Hansen and Coenen, 2015; Przychodzen and Przychodzen, 2020) in 

shaping technology development. On the other hand, recent literature 
sheds light on the role of cross-border CCMT diffusion driven by inter
national knowledge transfer (Fadly and Fontes, 2019; Holm et al., 2020; 
Lopolito et al., 2022; Shih and Chang, 2009; Yu et al., 2022). However, 
most recent empirical studies have two potential limitations. First, they 
tend to focus on bilateral relationships between countries as a measure 
of international connections. Yet, technology diffusion is not a 
straightforward bilateral process; it often involves strong network ef
fects originating from agents' indirect linkages (Aldieri et al., 2019; 
Derudder, 2021; Halleck-Vega et al., 2018; Jackson et al., 2017). The 
second concern arises with the idea of countries as agents in trans
national CCMT diffusion. While countries certainly wield significant 
influence in certain industries like aerospace and nuclear energy (Vega 
and Mandel, 2018), in the case of most CCMTs, the diffusion process is 
ultimately shaped by interactions at the firm level (Chaney, 2014; 
Horbach and Rammer, 2018; Yeung, 2005). 

To address these issues, this paper adopts a network perspective to 
explore the network effects arising from the global CCMT diffusion 
processes on CCMT development. In network theory, a network consists 
of nodes and links that display a pattern of connections (Freeman, 
2004). In this paper, we explicitly incorporate a critical sub-nodal level, 
namely firms, into the network structure, aligning with the approach 
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employed in relevant previous studies (see, e.g., Taylor, 2001, Sassen, 
2013 and Neal et al., 2021). We argue that it is the firms operating 
within and across countries that essentially shape countries as nodes 
within the global diffusion networks (Beaverstock et al., 2000; Sassen, 
2013; Taylor and Derudder, 2015; Taylor, 2001; Wall et al., 2011). 

In this regard, the selection of firms and the types of their relation
ships are crucial. We focus on the intra-firm relationships of multina
tional corporations (MNCs) with significant CCMT innovation capacities 
for several reasons. First, MNCs possess extensive knowledge pertaining 
to innovative technologies, owing to their substantial R&D investment 
and their pursuit of economic gains (Hotz-Hart, 2000; Popp, 2020). 
Second, certain types of knowledge are more prone to internal trans
mission (Gaur et al., 2019; Markusen, 1995; Spraggon and Bodolica, 
2012). For example, tacit knowledge tends to circulate more efficiently 
among individuals or groups within a well-structured framework, 
facilitated by established organizational routines, ultimately becoming 
an integral component of a firm's cumulative knowledge bases (Grant 
and Phene, 2022; Howells, 1996). Furthermore, to prevent knowledge 
from falling into a competitor's hands and to maximize the returns on 
R&D investment, strategic innovations are often held in strict confidence 
(Abdul Wahab et al., 2009; Archibugi and Filippetti, 2018; Liebeskind, 
2009). Third, the internationalization strategies and local market op
erations of MNCs facilitate knowledge transfer on a global scale (Bathelt 
et al., 2004; Hitt et al., 2016). Finally, cross-border intra-firm relation
ships encompass dynamic interactions between headquarters and sub
sidiaries, inherently promoting international knowledge diffusion 
through these connections (Athreye et al., 2016; Ferraris et al., 2020; 
Van Wijk et al., 2008). 

Specifically, we first identify the 228 most innovative MNCs in 
CCMTs based on their patent activities up to and including 2021. We 
then construct the CCMT diffusion networks, incorporating data on 
sustainable innovation capacities, business scales, and geographical in
formation regarding the headquarters and subsidiaries of these 228 
MNCs. The weighted networks involve 656,586 transnational linkages 
across 185 countries/regions. Once these networks are established, we 
calculate the network capital of each country within the diffusion net
works with respect to linkage volumes and structural positionalities. 
Finally, we incorporate these network capital measures into the 
econometric regression models to investigate the network effects origi
nating from the diffusion networks on CCMT development. 

This paper offers two innovations. First, we investigate the global 
CCMT diffusion networks with a focus on the global deployment of 
sustainable innovation MNCs, whereas the existing empirical studies 
primarily consider countries as network makers. Moreover, over the past 
decades, numerous studies have constructed global relational networks 
using data from various types of firms, including MNCs (Alderson and 
Beckfield, 2004), advanced producer service firms (Beaverstock et al., 
2000; Taylor and Derudder, 2015), and financial firms (Diebold and 
Yılmaz, 2014). However, we are not aware of any studies that approach 
global corporate networks in the context of sustainability transitions and 
CCMT diffusion. Second, we adopt a network perspective to assess the 
impact of different forms of network capital on CCMT development. 
Existing literature mainly focuses on bilateral relationships. In contrast, 
our network-based approach not only captures the effects of direct 
linkages but also systematically provides insights into network effects 
arising from structural positionalities within the networks. 

This paper proceeds as follows. In Section 2, we briefly review the 
relevant literature, highlighting the necessity of integrating network 
capital into analysis of factors that influence CCMT development. In 
Section 3, we outline the methodology for network statistical analysis 
and econometric model specification. Section 4 presents the data, while 
Section 5 discusses the findings. We conclude and propose directions for 
future studies in Section 6. 

2. Literature review 

Literature on technology development and diffusion is pervasive. 
Technological progress is often considered as a path- and place- 
dependence process (Boschma et al., 2018; Heimeriks and Boschma, 
2014; Nelson and Winter, 1982). In the context of CCMTs, existing 
research mainly identifies relevant domestic determinants that influence 
green innovations from a host country perspective (Halleck-Vega et al., 
2018; Lopolito et al., 2022). These factors include technological relat
edness (Hidalgo et al., 2018), reliance on natural resources (Best, 2017), 
and socio-economic configurations including environmental and energy 
policies (Johnstone et al., 2010), market liberalization (Nicolli and 
Vona, 2019), and access to financial capital (Nicolli and Vona, 2016; 
Veugelers, 2012). There exist more comprehensive studies that examine 
the role of these domestic determinants in CCMT development (see, e.g., 
Aguirre and Ibikunle, 2014, Popp et al., 2011 and Przychodzen and 
Przychodzen, 2020). 

With increasing globalization, recent literature has begun to explore 
the impact of international relationships on transnational technology 
diffusion, subsequently driving technological advancements (see, e.g., 
Ferrier et al., 2016, Lopolito et al., 2022, Perkins and Neumayer, 2005 
and Popp, 2020). Countries' technological development reaps several 
benefits from transnational technology diffusion (Mancusi, 2008). From 
the perspective of individual nation/state, access to the knowledge 
embedded in the technologies disseminated from abroad is instrumental 
in advancing their own technological capacities (Hansen and Lema, 
2019). This access is crucial for mitigating uncertainties and risks 
associated with inventing and introducing new technologies (Giuliani 
et al., 2016). New technologies are generally costly and unreliable 
during the incubation and early commercialization stages (Negro et al., 
2012). In particular, CCMTs often carry significant uncertainties con
cerning their investment returns (Shakeel et al., 2017). Furthermore, 
countries can enhance the efficiency of their energy R&D investments by 
leveraging knowledge generated elsewhere (Bosetti et al., 2008). This is 
particularly relevant for the developing countries who can benefit from 
the technological advancements of the forerunners (Pegels and Alten
burg, 2020). 

When considering global challenges, transnational CCMT diffusion 
assumes a crucial role in achieving global sustainability transition goals. 
Given that most developing countries orient their policies on poverty 
reduction and economic modernization, the landscape of CCMT in
novations is currently dominated by a handful of highly developed 
countries (IEA, 2021; Kaygusuz, 2012; Probst et al., 2021). Since in
novations already exist in certain countries, facilitating the transfer of 
these technologies from inventors to late adopters becomes paramount 
in addressing global challenges (Ockwell et al., 2008). 

Current literature outlines three primary channels through which 
technologies can be transferred across borders. The first channel is in
ternational trade, which allows countries to acquire products and the 
associated knowledge that have been innovated or produced elsewhere 
(Garsous and Worack, 2022; Keller, 2004). This knowledge encompasses 
various aspects, including production costs, technical performance, in
dustrial chains, and experience, all of which is enriched through both 
formal and informal interactions among trading partners (Athreye et al., 
2023). It is also suggested that the intensification of market competition 
has increased the demand for new technologies. The second channel 
involves foreign investment facilitated by MNCs. MNCs produce, 
manufacture and control most advanced technologies worldwide 
(Dunning and Lundan, 2008; Younas, 2021). When MNCs expand into 
foreign markets, they export their experience and innovations to other 
countries through project investments or subsidiary operations, thereby 
enhancing the technological capacities of the recipient countries (De 
Beule and Van Beveren, 2019). The presence of MNCs is widely 
acknowledged for its role in facilitating the transfer of information, 
know-how, and skills associated with cutting-edge technologies (Antras 
et al., 2009). The third channel involves licensing agreements with local 
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firms. MNCs transfer knowledge abroad by selling their intellectual 
property rights to overseas companies (Casson and Wadeson, 2018). 
Licensing often avoids many potential trade barriers when compared to 
direct investments (Nagaoka, 2009). 

In the context of CCMT diffusion, recent literature has explored how 
these channels operationalize with different types of relationships be
tween countries (De Coninck and Sagar, 2015; Fadly and Fontes, 2019; 
Mandel et al., 2020). However, there are two potential drawbacks. First, 
literature mainly focuses on bilateral relationships, treating each pair of 
countries independently. The second concern arises from the notion that 
countries are the primary agents in the process of CCMT diffusion. 

The first drawback lies in neglecting the network effects, which 
facilitate the diffusion of technologies between indirectly connected 
countries through intermediaries. For example, even in cases where 
there is no direct connection between countries A and C, technologies 
and knowledge could still be exchanged between them via an interme
diary country like B. This means that once knowledge is acquired by the 
immediate partners of innovators, it can be further disseminated to the 
partners of the direct partners and so forth (Faems et al., 2020; Ferrier 
et al., 2016). Recent network-based models of technology diffusion have 
approached how knowledge spreads across various network configura
tions, suggesting the significance of network capital in international 
knowledge acquisition (Allan et al., 2014; Chesbrough, 2003; Harris, 
2011). 

Network capital, a relational asset derived from complex interactions 
with external actors, plays a vital role in facilitating knowledge ex
change by establishing network connections to distant resources (Hug
gins et al., 2012; Huggins and Thompson, 2014). Actors with higher 
network capital tend to occupy advantageous positions to reinforce local 
innovation efforts owing to their enhanced capacity to transfer complex 
knowledge across spatial boundaries (Rodríguez-Pose and Crescenzi, 
2008). Nevertheless, previous research on CCMT diffusion has pre
dominantly embraced a bilateral perspective, with limited exploration 
of network effects. A notable exception is the work of Halleck-Vega et al. 
(2018). In their study, the authors adopt a network-based approach to 
analyze the global transnational diffusion of wind energy technologies 
from 1983 to 2016. They access various network centralities, including 
degree, closeness, betweenness and eigenvector, across 94 countries. 
Their findings highlight the significant network effects arising from the 
structural positionalities within these networks, which play a pivotal 
role in facilitating the transnational diffusion of wind energy 
technologies. 

Nevertheless, within these studies, the idea of countries acting as 
agents of CCMT development and network makers of global CCMT 
diffusion networks raises another concern. Most network analysis relies 
on a two-level structure, consisting of members as nodes, i.e. countries, 
and their interactions that constitute the networks. While the literature 
notes that cities or countries function as nodes in the networks, they are 
not the primary agents in the formation of networks (Beaverstock et al., 
2000; Taylor and Derudder, 2015; Taylor, 2001, 2019). Instead, the 
interlocking network model introduces the concept of sub-nodes as the 
foundational element of network formation (Derudder, 2012; Taylor 
and Derudder, 2015; Taylor, 2001, 2011). It is suggested that the 
behavior of the sub-nodes, i.e. firms, play the fundamental roles in 
shaping cities or countries as nodes within the network (Derudder and 
Parnreiter, 2014; Liu and Derudder, 2012; Neal et al., 2021). 

Our paper demonstrates how cross-border activities of MNCs estab
lish connections between countries. We identify these relationships be
tween countries by essentially analyzing the behaviors of firms. This is 
particularly important in the context of CCMTs, as transnational diffu
sion primarily emerges from interactions between private firms (Hor
bach and Rammer, 2018). While countries undeniably play important 
roles in CCMT diffusion, they often function as intermediaries or facil
itators, for instance, by offering incentives and providing R&D in
vestments to support firms (Moss, 2009). Accordingly, this paper aims to 
tackle these two potential challenges and pitfalls by examining the roles 

of sustainable innovation MNCs in accelerating CCMT diffusion. We 
account for the network capital generated throughout the CCMT diffu
sion process when assessing the factors that influence CCMT 
development. 

3. Methods 

The methodological framework employed in this paper consists of 
two parts. Section 3.1 introduces the method for network statistical 
analysis. Drawing from Derudder (2021) and Taylor and Derudder 
(2015), we analyze firms' behaviors with the goal of constructing 
country-level networks. Section 3.2 discusses the econometric specifi
cation, where we incorporate the network variables calculated in Sec
tion 3.1 into the econometric regression model to examine the 
relationship between network capital and CCMT development. 

3.1. Network statistical analysis 

In this analysis, the global CCMT diffusion networks are represented 
by weighted intra-firm networks of MNCs with substantial sustainable 
innovation capacities. This is mainly motivated by their extensive 
knowledge bases, global deployments, and internal knowledge flows 
within them resulting from intra-firm relationships. To construct these 
networks, we identify the top MNCs with strong sustainable innovation 
capacities in CCMTs based on their CCMT-related patent activities. We 
select MNCs that have obtained a minimum of 15 CCMT-related patents 
up to and including 2021. We set a threshold of 15 CCMTs to ensure that 
the selected MNCs devote substantial resources to CCMT research during 
the study period, excluding those only involved in short-term, sporadic 
activities. This threshold also filters out smaller MNCs with less influ
ence in the global CCMT landscape. This results in a total of 228 MNCs 
worldwide.1 Subsequently, we construct firm-to-country two-mode 
networks based on the country-level geographical locations of these 
MNCs' headquarters and subsidiaries. These networks are assigned 
weights using information on their sustainable innovation capacities 
and business scales. Finally, we convert these two-mode networks into 
country-dyad one-mode networks, which allow us to calculate the 
network capital for each country. 

3.1.1. Constructing weighted matrices 
When constructing the weighted matrices, we consider three factors 

that potentially influence the magnitude of knowledge transfer, 
including the number of MNCs within a country, the sustainable inno
vation capacities of these MNCs, and their business scales. 

Regarding the first factor, we quantify it by counting the presence of 
selected MNCs' headquarters and subsidiaries in each country. Similar to 
Alderson and Beckfield (2004), Wall et al. (2011) and Derudder and 
Parnreiter (2014), we measure the intensity of CCMT diffusion between 
two countries by considering the cumulative number of intra-firm 
linkages that connect the home countries, where headquarters are 
based, to the host countries, where subsidiaries are located. Mathe
matically, the directed network G(V,E) consists of a set of 
countries N = |V| and a set of linkages E = |ε|, fully presented by its 
adjacency matrix M =

{
mij

}
. In this binary matrix, each element mij =

{0,1} indicates whether the subsidiary of the MNC headquartered in 
country i is present (1) or absent (0) in country j in 2021. Here, we assign 
the adjacency matrix M a weighted matrix W1 =

{
wij

}
, where wij =

∑n
a=1vi,a*vj,a. It quantifies the overall strength of the connection between 

any given pair of countries i and j by summing the number of sub
sidiaries located in country j across all MNCs (a→n) which have their 
headquarters in country i. Each element of the adjacency matrix M1 is 

1 For MNCs with CCMT rankings below 228, there is a significant decrease in 
the total number of CCMT-related patents. 
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denoted as 

{
mij*wij

}
=

{

mij*
∑n

a=1
vi,a*vj,a

}

(1) 

Next, building on M1, we consider variations in sustainable innova
tion capacities among the MNCs. We assign a normalized patent weight 
Wp = {pn/P} to each element of the adjacency matrix M1, where pn 

represents the number of patents held by MNC n, and P represents the 
total patents held by these 228 MNCs. Consequently, each element in the 
adjacency matrix M2 can be expressed as 

{
mij*wij*

pn

P

}
=

{

mij*
∑n

a=1
vi,a*vj,a*

pa

P

}

(2) 

Finally, we consider the business scales of these 228 MNCs, which 
suggest their diverse knowledge bases and influence potential. To assign 
greater weights to MNCs with larger business scales, we introduce a 
normalized turnover weight Wt = {tn/Tn} to each element of the adja
cency matrix M2. Here, tn represents the average turnover of firm n from 
2000 to 2021, and T is the sum of average turnovers for these 228 MNCs 
over this period.2 Each element of the adjacency matrix M3 is denoted as 

{
mij*wij*

pn

P
*

tn

T

}
=

{

mij*
∑n

a=1
vi,a*vj,a*

pa

P
*
ta

T

}

(3) 

The subsequent analysis is based on the adjacency matrix M3, which 
incorporates all three factors that can influence a firm's technology and 
knowledge transfer capacities. 

3.1.2. Calculating network capital 
Upon constructing the company-to-county two-mode weighted net

works, we convert them into country-dyad one-mode networks. In this 
study, we consider the network as an outcome rather than a process, 
aiming to assess the network capital of countries across various di
mensions of centrality measures. Consequently, we employ centrality- 
based network analysis techniques, rather than techniques that are 
mainly used for network formation studies such as the tie-oriented 
exponential random graph model (Lusher et al., 2013). Following the 
approach adopted in relevant studies (see, e.g., Huggins et al., 2012, 
Huggins and Thompson, 2014 and Shi et al., 2022), network capital is 
measured with respect to linkage volumes and structural positionalities, 
considering whether the capital is generated through direct linkages or 
structure positions. 

Linkage volumes reflect a country's capacity to establish interactions 
with other countries. We measure linkage volumes by considering 
transnational intra-firm linkages, encompassing weighted indegree, 
weighted outdegree, and weighted total degree. Specifically, weighted 
indegree represents the sum of weighted inbound connections, denoting 
the number of subsidiaries received by a country. It provides insight into 
a country's centripetal force and attractiveness to source countries. 
Weighted outdegree measures the sum of weighted outbound connec
tions, indicating the number of headquarters located in a country. It 
reflects a country's centrifugal force and prestige in expanding its in
fluence within the network. Weighted total degree is the sum of 
weighted indegree and weighted outdegree, calculating the total 
weighted connections occurring within a country's borders. This metric 
represents a country's self-maintained capacity within the network 
(Table 3). Mathematically, following Newman (2018) and Alderson and 
Beckfield (2004), the degree centrality of country v is given by 

D(v) =
Tdv

|N| − 1
(4)  

where N represents the set of nodes in the network, and Tdv denotes the 
total degree of country v, i.e., the count of linkages that are directly 
connected to country v. Tdv consists of two components, namely inde
gree Idv measures the number of incoming linkages to country v, and 
outdegree Odv represents the number of outgoing linkages from country 
v. 

Furthermore, structural positionalities evaluate a country's signifi
cance within the network by considering its connections with influential 
counterparts. These are assessed using metrics including eigenvector, 
betweenness, and closeness. Specifically, eigenvector evaluates a 
country's ability in enhancing its standing by establishing its connec
tions with influential peers. It suggests that a country may not be 
advanced in CCMTs, it can still benefit from being highly connected to 
countries with high CCMT capacities. Mathematically, the eigenvector 
E(v) of country v is written as 

E(v) =
1
λ
∑

t∈M(v)
xt =

1
λ
∑

t∈G
avtxt (5)  

where M(v) is a set of neighbours of v, avt is 1 when v and t are directly 
connected, and λ is a constant. Betweenness quantifies how frequently a 
country appears on the shortest paths between two indirectly connected 
countries, indicating its gateway position within the network. The 
betweenness B(v) of country v is written as 

B(v) =
∑

u∕=v∕=t∈V

σu,t(v)
σu,t

(6)  

where σut is the number of shortest paths between u and t, and σu,t(v) is 
the number of shortest paths between u and t that pass through country 
v. Lastly, closeness quantifies a country's network proximity to others by 
averaging the shortest path lengths from that country to every other 
country within the network. The closeness measure C(v) of country v is 
written as 

C(v) =
1

∑
u∈N/vd(v, u)

(7)  

where N is the set of countries in the network, and d(v, u) is the length of 
the shortest paths from v to all the other vertices u. We employ Gephi 
software for network visualization and network capital calculation. 

3.2. Econometric regression analysis 

To explore the relationship between network capital generated 
during the CCMT diffusion process and CCMT development, we estimate 
the following econometric equation: 

Yi = α+ β1Ni + β2Xi + ε (8)  

where Yi is the level of CCMT development in country i in 2021, proxied 
by the logarithm of per capita net renewable electricity production. The 
inherent unpredictability of renewable energy resources introduces 
several challenges during the renewable electricity production process 
(Denholm et al., 2021). First, it requires balancing supply and demand, 
which involves addressing short-term fluctuations of variable renewable 
energy resources, diurnal mismatches, and seasonal mismatches. This is 
particularly evident in technologies reliant on short-term weather con
ditions, such as highly distributed solar photovoltaics and wind (Rai and 
Henry, 2016; Zhang et al., 2023). Second, it requires the design of 
reliable inverter-based grids to ensure frequency stability, voltage sta
bility, rotor angle stability, power protection, and voltage control 
(Kundur et al., 2004). Furthermore, economic viability entails consid
erations of advancing materials, manufacturing processes, energy con
version systems, as well as establishing a resilient and stable supply 

2 We use turnover data starting from 2000 mainly due to the unavailability of 
turnover data for many firms before 2000. Furthermore, among these 228 
MNCs, 6 of them were established after 2000. We calculate their average 
turnover by dividing the total turnover between the year of their establishment 
and 2021 by the number of years since their establishment. 
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chain. Tackling these challenges requires integrating various technolo
gies, and CCMTs offer numerous solutions. For example, Y02B highlights 
technologies related to end-user applications, Y02E emphasizes energy 
generation through various renewable energy sources, Y02P concen
trates on technologies in the production or processing of goods and 
products, Y02T encompasses solutions for electric vehicles, and Y04S 
focuses on power networks operations and smart grids. Therefore, we 
utilize per capita renewable electricity production as a proxy to gauge a 
country's development level in CCMTs. The rationale is that addressing 
the challenges mentioned often requires the effective and innovative 
integration of various CCMTs. Similar to Fadly and Fontes (2019) and 
Przychodzen and Przychodzen (2020), this indicator is calculated by 
dividing the total renewable electricity net generation (in million kWh) 
by the total population of the country in 2021. 

Furthermore, a is the intercept, β is the vector of coefficients of the 
independent variables, and ε represents the random error term. Ni is the 
network capital calculated in section 3.1, measured in terms of linkage 
volumes and structural positionalities. Linkage volumes consist of 
weighted indegree, weighted outdegree, and weighted total degree. 
Structural positionalities encompass eigenvector, betweenness, and 
closeness. Moreover, Xi represents the control variables obtained from 
the literature that could potentially influence renewable electricity 
generation. They include GDP per capita, energy policy instrument, and 
government's administrative capacity. GDP per capita accounts for the 
economic size and the development level of a country. Energy policy 
instrument, included as a dummy variable, aims to control for countries' 
different industrial strategies and policy support. We access whether a 
country had climate change mitigation policy in effect in 2021. These 
policies encompass measures related to energy efficiency, renewable 
energy, technology R&D and innovation, electrification, and carbon 
capture utilization and storage. The variable takes a value of 1 if a policy 
was in effect in a country in 2021 and 0 if no such policy was introduced 
or had ended by 2021. Lastly, government's administrative capacity is 
measured through regulatory quality and governance effectiveness. This 
variable reflects a government's ability to manage the local clean energy 
market and the ease or difficulty for private investors to conduct busi
ness in that country. See Section 4.2 for more information on the data 
sources used for these variables. 

4. Data 

4.1. Firm-level data 

Three types of firm-level data are employed to construct the global 
CCMT diffusion networks, namely cumulative CCMT-related patent data 
up to and including 2021, country-level geographic data of headquarters 
and subsidiaries in 2021, and the average turnover of these 228 MNCs 
from 2000 to 2021. 

We employ patent data related to CCMTs to identify the MNCs with 
high sustainable innovation capacities in CCMTs. Patent data is widely 
used to study knowledge generation and dissemination (Jaffe et al., 
2002; Verendel, 2023), as well as to characterize the knowledge bases of 
countries and firms (Antonelli et al., 2010; Furman et al., 2002). The 
CCMT-related patent data comes from the Worldwide Patent Statistical 
Database (PATSTAT 2022 spring version), published by the European 
Patent Office, which contains data from 84 patent offices worldwide and 
covers all inventor countries (EPO, 2021; Popp et al., 2011). In 2012, the 
European Patent Office introduced the Y02/Y04S classification scheme 
within the PATSTAT to categorize technologies that are broadly asso
ciated with climate change mitigation (Angelucci et al., 2018; Li et al., 
2020; Veefkind et al., 2012).Within the Y02/Y04S category, there are 
nine subcategories, as detailed in Table 1. Our study aims to provide an 
overview of the overall development and diffusion of CCMTs without 
placing specific emphasis on individual CCMTs. Therefore, our analysis 
encompasses all CCMTs categorized within the Y02/Y04S classification. 

Fig. 1 illustrates the change in the number of CCMT-related patents 

for the top 10,000 firms or individuals from 2003 to 2021. Patents for all 
nine CCMTs have experienced substantial growths, particularly since 
2009. Among these categories, the CCMTs related to energy generation, 
transmission and distribution (Y02E) exhibit the highest patent count, 
totaling 165,578 patents. Conversely, CCMTs associated with the cap
ture, storage, sequestration or disposal of greenhouse gases (Y02C) 
display the lowest patent activity, with a total of 16,298 patents. 

The PATSTAT database contains various types of firms, including 
private versus state-owned firms, and multinational versus non- 
multinationals firms. We focus on MNCs as we are interested in firms 
that are capable of transnationally transferring technologies through 
intra-firm linkages. We choose the MNCs that have filed a minimum of 
15 CCMT-related patents up to and including 2021. This results in 228 
MNCs globally and a total of 145,716 patent in our sample.3 Among 
these 228 MNCs, the average number of CCMT-related patents is 639.11, 
with Siemens AG having the most (6913) and Moderna Inc. the least 
(15). 

Table 2 provides information on the leading MNCs which exhibit the 
most robust sustainable innovation capacities among firms in our sam
ple. Fig. 2 compares the total count of CCMT-related patents for these 
228 MNCs, categorized by their respective countries/regions of head
quarters. Countries with more CCMT-related patents are shaded darker. 
These 228 MNCs are headquartered in 20 countries/regions. The top 10 
countries boasting the largest number of CCMT-related patents are 
Japan (46,529), the US (31,972), Germany (22,967), South Korea 
(12,639), France (6077), the Netherlands (4631), the UK (4474), 
Mainland China (3255), Sweden (2485), and Switzerland (2224). 
Additionally, the figure provides a list of prominent MNCs head
quartered in these 20 countries/regions with the highest number of 
CCMT-related patents. 

We obtain ownership information, country-level locations of head
quarters and subsidiaries in 2021, and turnover data from 2000 to 2021 
for these 228 MNCs from Bureau van Dijk's Osiris database. In the cases 
of missing data for some firms in the Bureau van Dijk's Osiris database, 
we source them from the annual reports of the respective companies. In 
total, we extract a dataset comprising 88,863 ownership relationships, 
of which 22,277 are domestic and 66,586 are transnational. To construct 
global CCMT diffusion networks, we aggregate the data at the country 
level. These networks connect 20 home countries/regions with at least 
one outgoing corporate connection to 185 host countries/regions with at 
least one incoming corporate connection. For example, Siemens AG, 
headquartered in Germany, operates 1167 overseas subsidiaries across 
85 countries in 2021. Among these, the US has the most Siemens AG 
subsidiaries, totaling 456, whereas countries like Oman and Tanzania 
have only one Siemens AG subsidiary each. We use the number of sub
sidiaries as a measure to assess the extent of Germany's connections with 

Table 1 
Description of the Y02/Y04S category.  

Y02 Climate change mitigation technologies 

Y02A Related to adaptation to climate change. 
Y02B Related to buildings, including housing and appliances or related end-user 

applications. 
Y02C Capture, storage, sequestration or disposal of greenhouse gases. 
Y02D Information and communication technologies aiming at the reduction own 

energy use. 
Y02E Related to energy generation, transmission and distribution. 
Y02P Related to the production or processing of goods. 
Y02T Related to transportation. 
Y02W Related to wastewater treatment or waste management. 
Y04S Smart grid technologies. 

Source: EPO (2023). 

3 In the original database, 11 out of the top 240 firms are either state-owned 
or non-multinational. They have been excluded from our firm sample. 
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other countries facilitated through Siemens AG. The list of these coun
tries/regions can be found in the Appendix.4 

4.2. Country-level data 

We source data for renewable electricity generation in 2021, the 
most current year for which the data is made available, from the U.S. 
Energy Information Administration.5 Regarding the control variables, 

GDP per capita data is from the World Bank's Open Data platform.6 

Energy policy instrument information, reflecting countries' different 
industrial strategies and policy supports, are gathered from the Policies 
Databases of the International Energy Agency and the International 
Renewable Energy Agency.7 This database is widely used in comparative 
studies of cross-country policies in clean technologies (Baldwin et al., 
2017; Carley et al., 2017; Kim, 2020). Data on government's adminis
trative capacity is collected from World Bank Worldwide Governance 
Indicators.8 Table 3 presents details on variable operationalization, data 

Fig. 1. Number of CCMT-related patents by type from 2003 to 2021.  

Table 2 
Top five sustainable innovation MNCs and relevant information.  

MNC Number of CCMT-related 
patents 

Average turnover 2000–2021 
(billion USD) 

Headquarter 
locations 

Top 5 overseas subsidiary 
locations 

Number of receiving 
subsidiaries 

Siemens AG 6913 $ 91.415 Germany USA 456     
China 81     
Canada 75     
UK 39     
India 34 

Toyota Motor Corporation 6563 $ 207.749 Japan USA 216     
China 29     
Canada 21     
Thailand 18     
Indonesia 14 

General Electric Company 6398 $ 125.715 USA UK 116     
Canada 76     
France 52     
Netherlands 45     
China 39 

Raytheon Technologies 
Corporation 

4911 $ 48.337 USA Canada 63     

UK 50     
Australia 50     
France 20     
Italy 16 

Panasonic Holdings 
Corporation 

4850 $ 74.313 Japan USA 274     

China 74     
Malaysia 24     
Canada 21     
Germany 20     
Spain 20  

4 We source information about countries and regions from the United Na
tions' list of member states.  

5 https://www.eia.gov/ 

6 https://www.worldbank.org/en/home  
7 https://www.iea.org/policies  
8 https://info.worldbank.org/governance/wgi/ 
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sources, and descriptions. Notably, the econometric analysis retains 173 
countries/regions due to missing data on one or more crucial variables 
in some countries/regions, whereas the network statistical analysis 
maintains a sample size of 185.9 

5. Results and discussion 

5.1. Network statistical analysis results 

Figs. 3–8 illustrate the global CCMT diffusion networks using six 
network capital measures. In these visualizations, each node represents 
a country, while the links between nodes reflect CCMT diffusion level 
among pairs of countries. Node size and the corresponding country 
name indicate the magnitude of network capital within each country, 
while edge thickness denotes the strength of CCMT diffusion between 
connected countries. 

Specifically, Fig. 3 exhibits the global CCMT diffusion network based 
on weighted total degree, revealing an uneven spatial pattern. Countries 
with substantial network capital are predominantly clustered in Western 
Europe, North America, and East Asia, with Germany, the US, and Japan 
as regional centers. Regarding interregional linkages, the US maintains 
close ties with several Western European countries, especially the UK, 
the Netherlands, France and Germany. Among the connections between 
North America and East Asia, the link between the US and Japan stands 
out prominently. Furthermore, connections between Western Europe 

and East Asia are relatively weaker, except for the strong links with 
Japan and China. Additionally, intraregional interactions are less pro
nounced compared to interregional connections. There exists a signifi
cant proportion of interregional connections, irrespective of 
geographical distance. However, there are instances of diffusion that can 
be partly attributed to spatial proximity, such as Germany – the UK, the 
US – Canada, and Japan – China. 

Table 4 compares the top 10 countries across six different network 
capital measures. Weighted outdegree analysis highlights that a small 
group of countries predominantly controls the majority of outbound 
connections. These influential countries include Germany, Japan, the 
US, the UK, South Korea, the Netherlands, France, Canada, Switzerland 
and Sweden. Together, these ten countries account for nearly 98.92% of 
all weighted outgoing connections. A similar, though less pronounced, 
pattern emerges when examining weighted indegree. The top 10 coun
tries, namely the US, Canada, China, the UK, the Netherlands, France, 
Australia, Germany, Mexico, and India, account for approximately 
63.91% of all incoming connections. Concerning structural position
alities, i.e. eigenvector, closeness, and betweenness, the US, China, 
Canada, the UK, and the Netherlands also emerge as significant hubs and 
authorities, reinforcing their dominant roles within the network. 
Finally, concerning bilateral linkages, the global CCMT diffusion 
network demonstrates a similar imbalance, with only 1.1% of country 
pairs accounting for approximately 50% of all connections. 

Interestingly, some countries, such as Australia, excel in terms of 
linkage volumes but do not necessarily score highly in structural posi
tionalities. Likewise, other countries, such as Belgium and Denmark, 
appear to hold significance in structural positionalities even though they 
may not stand out in terms of linkage volumes. This aligns with the 
findings of Vega and Mandel (2018), who argue that a country that is 
neither the most important source nor the most important technology 

Fig. 2. Comparison of CCMT-related patents by country/region.  

9 These 12 countries/regions that are excluded in the econometric analysis 
are Andorra, Bermuda, Curacao, East Timor, Federated States of Micronesia, 
Gambia, Gibraltar, Ivory Coast, Liechtenstein, Monaco, San Marino, and Tonga 
with only a few connections in total. 
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adopter can still be influenced by networks due to its connectedness with 
influential counterparts. 

In conclusion, the sustainable innovation capacities of MNCs and 
their strategies for global expansion result in countries assuming varying 
roles in transnational CCMT diffusion. Throughout this process, leading 
countries, notably the US, Germany, and Japan, control the majority of 
network resources, leaving others in a relatively disadvantaged position. 
The disparities in countries' network capital allow us to investigate 
whether these network advantages can indeed facilitate the develop
ment of CCMTs. 

5.2. Econometric regression results 

Table 5 presents the estimated results concerning the relationship 
between network capital and CCMT development. Given that different 
network measures conceptually capture different facets of network 
capital, they are introduced separately into the econometric models. 
This mitigates issues related to over-identification and multicollinearity 
issues (Shi et al., 2022). Consequently, we estimate six separate 
econometric regression models, each emphasizing a single network 
capital. 

Regarding the linkage volume variables, both weighted total degree 
and weighted indegree show a statistically significant positive rela
tionship with renewable electricity production at the 5% level. Addi
tionally, weighted outdegree demonstrates significance at the 10% level. 
These results suggest that a country's CCMT development can be posi
tively influenced by the presence of sustainable innovative MNCs (An
tras et al., 2009). 

The significant estimate of the coefficient of weighted indegree 
suggests that recipient countries benefit from receiving subsidiaries of 
MNCs with advanced CCMT capacities. This finding may be attributed to 
the substantial consumer markets for certain CCMTs in less developed 
countries, such as China and Brazil. Considering that countries hosting 
MNCs' headquarters tend to be more developed than countries receiving 
subsidiaries (Pfeiffer and Mulder, 2013), driven by market and return- 
on-investment interests, MNCs actively promote innovations origi
nating in countries where their headquarters are located to other nations 

through their globally deployed subsidiaries (Caleb et al., 2021). 
Another plausible explanation is the latecomer advantages in recip

ient countries, where less developed countries can rapidly adopt inno
vative technologies across their industrial structures (Perkins and 
Neumayer, 2005). First, late industrializers reap advantages from 
learning from technological pioneers (Grubler, 2012). The initial R&D 
phase of CCMT development typically involves high cost, limited flexi
bility, and unpredictability. Risk-taking MNCs tend to drive down 
application costs, enhance performance, and render the technologies 
economically viable, albeit at the cost of substantial expenditures 
(Hoskisson et al., 2011). Second, governments in advanced economies 
have been actively pursuing policies aimed at accelerating the adoption 
of emerging CCMTs such as residential solar photovoltaics and electric 
vehicles. Latecomer nations can leverage the experience and effective 
policies of these forerunners to accelerate the proliferation rates of such 
technologies. Fadly and Fontes (2019) and Lopolito et al. (2022) 
demonstrate the positive cross-country spillover effects stemming from 
policies designed to accelerate the development of CCMTs. Moreover, 
considering that most recipient countries have not yet established sub
stantial capacity in this domain, they have the flexibility to choose and 
integrate new technologies as part of their capital expansion efforts 
(Bank, 1992; Popp, 2020). 

The significant coefficient estimate for weighted outdegree suggests 
that a country can benefit from hosting the headquarters of MNCs with 
advanced CCMT capacities. Several arguments explain this finding. 
First, technologies tend to spread from their origins and initial markets 
due to geographical proximity (Corradini et al., 2021; Ernst, 2002). 
Face-to-face interactions, which decay with distance increases, further 
expedite this diffusion process (Bahar et al., 2014). Therefore, countries 
hosting the headquarters of these MNCs gain early access, allowing them 
to adopt advanced CCMTs before widespread commercialization 
(Aldieri, 2011). Moreover, domestic diffusion of new technologies 
typically face fewer policy and regulatory barriers compared to trans
national diffusion (Rao and Kishore, 2010). For instance, concerns over 
intellectual property rights can be more manageable when technologies 
are disseminated within a country, as opposed to cross-border transfers 
with varying intellectual property regulations (Dechezleprêtre and 

Table 3 
Description and summary statistics of the variable used.  

Variable Indicator Obs. Mean Std. Dev. Max Min 

Firm-level data      
Firms' sustainable 

innovative capacity 
Numbers of CCMT-related patents granted in or before 2021 228 639.105 1,019.168 6,913 15 

Firms' business scale Firm's average annual turnover between 2000 and 2021 (billion USD) 32.011 46.575 309.673 0.080 
Firms' ownership Number of headquarters a country/ region host 20 11.4 19.313 77 1 

Number of subsidiaries a country/ region receives 185 357.443 1,673.149 21,637 1 
Country-level data      
CCMT development Net renewable electricity production in 2021 (million kWh) 173 44,825.44 200,218.6 2,363,284 1.22 

Net renewable electricity production per capita in 2021 (million kWh) 0.0016 0.005 0.052 6.20e- 
07 

Network capital  
Weighted total degree “Self-maintained capacity”, scores measuring HQ-subsidiary linkages occurring 

within a country's boundary (see e.q. 4) 
0.050 0.224 2.155 1.00e- 

06 
Weighted indegree “Attractiveness”, scores measuring subsidiaries a country receives (see e.q. 4) 0.025 0.108 1.341 1.00e- 

06 
Weighted outdegree “Prestige”, scores measuring HQ a country hosts (see e.q. 4) 0.025 0.154 1.392 0 
Eigenvector “Authority”, scores measuring relative ranking of connectedness taking into account 

the whole network (see e.q. 5) 
0.249 0.221 1 0.018 

Betweenness “Gateway”, scores measuring the number of shortest paths from all countries to all 
others through a given country (see e.q. 6) 

0.0004 0.001 0.011 0 

Closeness “Propinquity”, scores measuring the average shortest distance length between a 
country and all other countries in a network (see e.q. 7) 

0.076 0.215 0.844 0 

Economic factor GDP per capita in 2021 (USD) 17,309.63 23,242.76 133,590.1 221.158 
Energy policy instrument Dummy variable: 1 if a country has at least one related policy in effect in 2021, or 

0 otherwise 
0.792 0.408 1 0 

Government's 
administrative capacity 

Scores measuring regulatory quality and government effectiveness in a given country 2.541 0.948 4.761 0.313  
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Glachant, 2014; Popp, 2020). Consequently, both geographic and 
institutional proximity to innovators serve as effective and efficient 
means for disseminating knowledge. 

Regarding structural positionalities, all three measurements, namely 
eigenvector, closeness, and betweenness, are identified as important 
factors affecting renewable electricity production. This supports the 
argument that an economy, which may not be the primary source or 
recipient of CCMTs in terms of quantity, can still derive benefits from 
innovators thanks to its pivotal position within the network (Fadly and 
Fontes, 2019; Vega and Mandel, 2018). 

Structural proximity to other innovators within the networks confers 
two significant network advantages that facilitate CCMT development in 
the intermediate countries. First, central positioning in various capital 
flows provides these economies with access to a diverse range of 

resources, capabilities, and markets (Lin, 2011). This creates great op
portunities for knowledge sharing and learning (Cheng, 2022). Such 
opportunities are strategically valuable, enabling economies to acquire 
new technologies ahead of widespread adoption. Second, their hub and 
gateway positions allow for the convergence of interdisciplinary 
knowledge, effectively transforming these economies into “chemical 
containers” where various innovations intersect (Penco, 2015). Within 
these economies, entities such as firms and governments do not merely 
act as passive knowledge recipients but also function as knowledge 
processors through local market exploration. Throughout these pro
cesses, network synergy facilitates knowledge reproduction, drawing 
from a broad pool of information initially held by each individual agent 
(Bathelt and Cohendet, 2014; Bathelt et al., 2004). This is particularly 
crucial in the context of CCMTs, which can be regarded as radical 

Fig. 3. Global CCMT diffusion network based on weighted total degree.  

Fig. 4. Global CCMT diffusion network based on weighted indegree.  
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innovations emerging from the synthesis of existing technologies in 
novel ways (Li et al., 2020). 

In the CCMT diffusion network, these MNCs can adapt their inter
national investment strategies through interactions with local stake
holders. Simultaneously, regional policymakers can leverage network 
capital generated by participating in MNCs' global expansion to drive 
regional development. This point can be further highlighted with the use 
of an illustrative example. In particular, we can consider BYD, a 
Shenzhen-based Chinese company that has established three factories in 
Brazil to domestically produce chassis and batteries for electric buses, 
and solar panels. In 2015, BYD initiated its operations in Campinas, 
Brazil, manufacturing chassis for electric buses. In 2017, the Brazilian 
Development Bank introduced a new policy known as FINAME, aimed at 
enhancing local manufacturer competitiveness and sustain national 
supply chains. Under this policy, customers seeking financial loans were 
required to ensure that the nationalization index of the products they 

purchase reached a minimum of 50%. In response, BYD established 
another factory in Manaus to produce lithium iron phosphate batteries 
locally. These batteries, which were previously imported, are now 
manufactured to supply the electric buses assembled in Campinas. In 
addition to localizing production, BYD also consolidates its R&D efforts 
locally, collaborating with local universities and research institutes to 
adapt its technologies to Brazil's local conditions and requirements. This 
collaborative approach allows BYD to access and incorporate existing 
local technological competencies, fostering synergy with the local 
technological ecosystem.10 

In this case, Brazil benefits in various ways from participating in the 

Fig. 5. Global CCMT diffusion network based on weighted outdegree.  

Fig. 6. Global CCMT technology diffusion network based on eigenvector.  

10 For a more detail discussion, please refer to https://carnegieendowment.or 
g/2022/10/18/why-brazil-sought-chinese-investments-to-diversify-its-manufa 
cturing-economy-pub-88194 
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Fig. 7. Global CCMT technology diffusion network based on betweenness.  

Fig. 8. Global CCMT technology diffusion network based on closeness.  

Table 4 
Top 10 countries by network capital.  

Linkage volume Structural positionalities Directed pairs 

Weighted total degree Weighted indegree Weighted outdegree Eigenvector Betweenness Closeness  

US 2.155 US 1.341 DE 1.392 US 1 US 0.0109 US 0.844 JP – US 0.493 
DE 1.48 CN 0.28 JP 1.175 DE 0.969 NL 0.0078 JP 0.793 DE – US 0.472 
JP 1.204 CA 0.258 US 0.813 CH 0.965 JP 0.0071 DE 0.793 UK – US 0.132 
GB 0.594 GB 0.24 GB 0.354 JP 0.956 DE 0.0056 CH 0.786 US – CA 0.112 
CA 0.311 NL 0.137 KR 0.191 GB 0.91 CH 0.0049 GB 0.736 US – UK 0.11 
CN 0.282 AU 0.122 NL 0.125 FR 0.905 FI 0.0046 FR 0.724 DE – CN 0.105 
NL 0.261 FR 0.12 FR 0.088 SE 0.89 GB 0.0038 FI 0.716 KR – US 0.097 
KR 0.232 DE 0.088 CA 0.053 NL 0.876 CN 0.0035 SE 0.71 JP – CN 0.094 
FR 0.208 IN 0.075 CH 0.033 FI 0.86 FR 0.0032 NL 0.702 DE – CA 0.066 
AU 0.122 IT 0.073 SE 0.025 CN 0.815 IE 0.0031 CN 0.676 DE – CA 0.057  
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global electric vehicle production networks. First, local manufacturing 
of eco-friendly products like electric buses and cost-effective solar panels 
directly contributes to Brazil's emission reduction goals. Additionally, 
policies encouraging MNCs like BYD to source from local suppliers 
stimulate domestic manufacturing, foster learning, and facilitate inno
vation localization. Furthermore, active engagement in sustainable 
innovation networks can advance local industrial ecosystems, present
ing Brazil with opportunities to be more integrated into knowledge- 
intensive supply chains (Hiratuka, 2022). 

Regarding the control variables, countries with stronger economic 
performance are more inclined to generate electricity from renewable 
resources, which align with previous research on clean technology 
diffusion. Given that CCMT development requires significant inputs of 
human capital and financial resources, its development tends to be more 
feasible for economically prosperous nations. Additionally, the results 
indicate that countries that have implemented climate change mitiga
tion policies tend to exhibit stronger performance in CCMT develop
ment. These policies not only reflect a country's commitment to 
environmental conservation and clean technology development, but 
also play a regulatory role in shaping the nation's industrial strategies 
and standards. Finally, the results indicate the positive impact of a 
government's administrative capacity in fostering CCMT development, 
emphasizing the crucial role of a supportive regulatory environment in 
driving progress in this field. 

6. Conclusion 

Given the magnitude of the sustainability target flux, current liter
ature and policy debates place significant emphasis on the role of CCMTs 
in achieving net-zero carbon emission goals. In this paper, we contribute 
to this discussion by constructing the global diffusion networks of 
CCMTs and assessing the impact of network capital on CCMT develop
ment. We argue that, beyond domestic factors, a country's progress in 
CCMT development is also influenced by various forms of network 
capital embedded within the global CCMT diffusion networks. Our 
findings demonstrate that countries, that establish stronger connections 
with global CCMT diffusion networks through sustainable innovative 
MNCs, tend to exhibit superior performance in CCMT development. 

Specifically, we first identified the top 228 sustainable innovation 

MNCs using CCMT-related patent data up to and including the year 
2021. Next, we constructed the global CCMT diffusion networks repre
sented by weighted intra-firm networks of these 228 MNCs. These net
works took into account several factors, including the number of MNCs a 
country hosts, the sustainable innovation capacities of these MNCs, as 
well as their business scales. Subsequently, we quantified various as
pects of network capital for each country within these networks with 
respect to linkage volumes and structural positionalities. Finally, we 
incorporated these network capital measures into the econometric 
regression models to investigate the extent to which network capital 
may influence CCMT development on a national level. 

Among the key findings, the network statistical analysis reveals a 
global disproportionate pattern of CCMT diffusion network, wherein 
only a small group of countries holds the majority of CCMT resources. 
Nonetheless, countries exhibited varying performance across different 
network capital metrics. Regarding the econometric regression out
comes, we identified positive effects associated with various forms of 
network capital, highlighting the pivotal role of transnational technol
ogy diffusion in advancing CCMT development. 

Our findings have several important policy implications. First, a 
country's CCMT development benefits from the presence of sustainable 
innovation MNCs, whether they host their headquarters or establish 
subsidiaries within the country. Consequently, policymakers should 
proactively seek to attract MNCs possessing strong innovation capacities 
in CCMTs. This can be achieved by incentive-based policies focused on 
attracting foreign investment in domestic clean technology innovation 
activities such as financial measures include tax benefits, grants, sub
sidies, and interest-reduced loans. These measures lower the costs 
associated with development projects and simultaneously mitigate the 
risks of foreign investment for MNCs. Meanwhile, governments can also 
establish investment promotion agencies to assist MNCs with location 
selection, talent recruitment, and financing. Moreover, countries can 
increase their appeal by fostering a regulatory environment that en
courages competition, protects intellectual property rights, and sim
plifies business registration process. Such favorable regulations can 
boost MNCs' confidence and alleviate concerns related to cross-border 
technology transfer. 

In addition to incentive-based policies, countries can also leverage 
capacity-building strategies to enhance their competitiveness in 

Table 5 
Regression results (n = 173).  

Variable Dependent variable: Log renewable electricity production per capita 

1 2 3 4 5 6 

Weighted total degree (log) 0.142** 
(0.063)      

Weighted indegree (log)  0.147** 
(0.065)     

Weighted outdegree (log)   0.086* 
(0.046)    

Eigenvector (log)    0.478*** 
(0.177)   

Closeness (log)     0.070** 
(0.035)  

Betweenness (log)      0.131** 
(0.063) 

GDP per capita (log) 0.325** 
(0.158) 

0.329** 
(0.158) 

0.389** 
(0.152) 

0.308* 
(0.156) 

0.385** 
(0.152) 

0.378** 
(0.152) 

Policy support (dummy) 0.527 
(0.383) 

0.519 
(0.385) 

0.793** 
(0.365) 

0.410 
(0.390) 

0.790** 
(0.364) 

0.791** 
(0.364) 

Government's administrative capacity (log) 0.907* 
(0.525) 

0.919* 
(0.526) 

0.816 
(0.530) 

0.891* 
(0.522) 

0.790 
(0.530) 

0.807 
(0.528) 

Constant − 11.279 − 11.281 − 11.744 − 11.031 − 11.936 − 11.040 
Adjusted R-squared 0.305 0.304 0.298 0.313 0.300 0.301 

Note: Standard error in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1. We log-transform all the variables to produce normally distributed model residuals. 
Additionally, a small constant is added to variables with zero value before log-transform to address the presence of zeros in the dataset. 
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attracting CCMT-related investment. First, nations can identify their 
existing technological and knowledge strengths to prioritize the devel
opment of certain CCMT industries. Simultaneously, investments in 
infrastructure, higher education, public services, and amenities that are 
necessary for CCMT innovation activities should be made. This 
strengthens the country's expertise in these technologies and fosters 
international collaborations with MNCs. Furthermore, besides devel
oping technologies directly belonging to CCMTs, countries can explore 
their existing capacities that are relevant to CCMTs. Enhancing these 
related capacities facilitates them to enter new specializations within the 
CCMT domains. To leverage on network capital, policymakers can 
employ network analysis, as demonstrated in this paper, to precisely 
identify their countries' global positions within the CCMT diffusion 
networks. This involve assessing existing MNC investment, available 
international capital, and connections with other countries through 
these MNCs. Once existing capacities as well as international linkages 
are identified, policymakers can strategically focus on developing these 
complementary capacities. 

Third, the findings highlight the potential for intermediary countries 
to acquire valuable relational assets due to their structural proximity to 
other key CCMT innovators. These intermediary countries, positioned as 
hubs and gateways within the diffusion networks, are well-placed to 
benefit from knowledge flows and information exchanges, functioning 
as hubs where interdisciplinary knowledge converge. This is primarily 
because MNCs need to engage with diverse local stakeholders when 
exploring new markets. Such collaborative engagement not only facili
tates knowledge dissemination from headquarters to the subsidiary lo
cations but also stimulates the generation of new knowledge as 
technologies are adapted to local contexts. In this regard, policymakers 
should consider establishing various communication platforms, such as 
regular conventions and incubators. These platforms can effectively 
facilitate interactions among different stakeholders and sectors, 
fostering an environment where various forms of knowledge synergize. 

There are several limitations in our study. First, we measured CCMT 
diffusion using intra-firm relationships which did not consider knowl
edge exchanges and spillovers between firms. Future studies could 
incorporate indicators capturing inter-firm relationships like mergers 
and acquisitions, and joint ventures to measure the strength of knowl
edge flows between companies. Second, our analysis was conducted at 
the national level. Yet, within a single country, there can be significant 
regional disparities in CCMT development, spatial concentrations of 
MNCs, industrialization levels, and industrial strategies. Conducting 

studies at finer spatial scales can provide a deeper insight into this 
regional heterogeneity, allowing for more locally tailored policy rec
ommendations that can address the unique contextual challenges and 
opportunities within each region. Third, we employed CCMT-related 
patent data up until and including 2021 to identify sustainable inno
vation MNCs. However, our analysis relied solely on corporate owner
ship and the geographical information of these MNCs' headquarters and 
subsidiaries as of 2021. This failed to account for changes that might 
have occurred during the study period, including those that might have 
influenced network capital calculation. Changes in corporate owner
ship, such as mergers and acquisitions, and restructuring can signifi
cantly impact a company's innovation strategies and practices within the 
CCMT domain. Moreover, we examined the entire patent category Y02/ 
Y04S without differentiating across its nine sub-classifications. Different 
CCMTs may exhibit distinct diffusion dynamics due to factors like 
market demand and technological complexity. Future studies can 
investigate individual sub-classifications within CCMTs to gain deeper 
insights into the global landscape of sustainable innovation and inform 
targeted strategies for promoting the diffusion of specific CCMTs. 
Finally, this study utilized the network as an outcome for nodal-level 
analysis. Future research could investigate the formation and evolu
tion of networks using models such as the exponential random graph 
model. These models facilitate the simultaneous modeling of the 
endogenous structural characteristics of a network along with the 
impact of exogenous variables. 
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Appendix A. Countries or regions included in this analysis  

Country/ region Country/ region code Outgoing linkages Incoming linkages Number of CCMT-related patents 

Afghanistan AF 0 2 0 
Albania AL 0 15 0 
Algeria DZ 0 68 0 
Andorra * AD 0 1 0 
Angola AO 0 29 0 
Antigua and Barbuda AG 0 2 0 
Argentina AR 0 304 0 
Armenia AM 0 4 0 
Aruba AW 0 2 0 
Australia AU 1 1,891 25 
Austria AT 3 476 617 
Azerbaijan AZ 0 19 0 
Bahrain BH 0 24 0 
Bangladesh BD 0 43 0 
Barbados BB 0 34 0 
Belarus BY 0 28 0 
Belgium BE 2 566 892 
Benin BJ 0 11 0 
Bermuda * BM 0 183 0 
Bhutan BT 0 1 0 

(continued on next page) 
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(continued ) 

Country/ region Country/ region code Outgoing linkages Incoming linkages Number of CCMT-related patents 

Bolivia BO 0 20 0 
Bosnia and Herzegovina BA 0 51 0 
Botswana BW 0 27 0 
Brazil BR 0 1,135 0 
British Virgin Islands VG 0 90 0 
Brunei BN 0 13 0 
Bulgaria BG 0 137 0 
Burkina Faso BF 0 9 0 
Burundi BI 0 1 0 
Cambodia KH 0 23 0 
Cameroon CM 0 15 0 
Canada CA 4 3,075 1,778 
Cape Verde CV 0 3 0 
Cayman Islands KY 0 176 0 
Chad TD 0 2 0 
Chile CL 0 303 0 
China Mainland CN 6 4,455 3,255 
Colombia CO 0 238 0 
Costa Rica CR 0 73 0 
Croatia HR 0 120 0 
Cuba CU 0 4 0 
Curaçao * CY 0 34 0 
Cyprus CW 0 19 0 
Czech Republic CZ 0 376 0 
Democratic Republic of the Congo CD 0 14 0 
Denmark DK 3 380 1,985 
Djibouti DJ 0 2 0 
Dominica DM 0 5 0 
Dominican Republic DO 0 33 0 
Ecuador EC 0 70 0 
Egypt EG 0 204 0 
El Salvador SV 0 30 0 
Equatorial Guinea GQ 0 1 0 
Eritrea ER 0 2 0 
Estonia EE 0 85 0 
Ethiopia ET 0 5 0 
Federated States of Micronesia * FJ 0 2 0 
Fiji FO 0 1 0 
Finland FI 3 278 1,237 
France FR 10 1,475 6,077 
Gabon GA 0 9 0 
Gambia * GM 0 3 0 
Georgia GE 0 11 0 
Germany DE 26 2,213 22,967 
Ghana GH 0 39 0 
Gibraltar * GI 0 20 0 
Greece GR 0 212 0 
Guatemala GT 0 59 0 
Guinea GN 0 10 0 
Guyana GY 0 1 0 
Haiti HT 0 1 0 
Honduras HN 0 23 0 
Hong Kong SAR, China HK 0 649 0 
Hungary HU 0 301 0 
Iceland IS 0 11 0 
India IN 1 986 155 
Indonesia ID 0 492 0 
Iran IR 0 34 0 
Iraq IQ 0 14 0 
Ireland IE 3 535 1,570 
Israel IL 0 219 0 
Italy IT 1 1,068 129 
Ivory Coast * CI 0 24 0 
Jamaica JM 0 8 0 
Japan JP 77 541 46,529 
Jordan JO 0 17 0 
Kazakhstan KZ 0 67 0 
Kenya KE 0 76 0 
Kosovo XK 0 5 0 
Kuwait KW 0 10 0 
Kyrgyzstan KG 0 1 0 
Laos LA 0 7 0 
Latvia LV 0 61 0 
Lebanon LB 0 26 0 
Lesotho LS 0 1 0 
Liberia LR 0 10 0 
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(continued ) 

Country/ region Country/ region code Outgoing linkages Incoming linkages Number of CCMT-related patents 

Libya LY 0 2 0 
Liechtenstein * LI 0 6 0 
Lithuania LT 0 66 0 
Luxembourg LU 0 488 0 
Macao SAR, China MO 0 7 0 
Macedonia MK 0 32 0 
Madagascar MG 0 7 0 
Malawi MW 0 6 0 
Malaysia MY 0 808 0 
Mali ML 0 4 0 
Malta MT 0 49 0 
Marshall Islands * MH 0 62 0 
Mauritania MR 0 2 0 
Mauritius MU 0 51 0 
Mexico MX 0 1,163 0 
Moldova MD 0 7 0 
Monaco * MC 0 3 0 
Mongolia MN 0 7 0 
Montenegro ME 0 17 0 
Morocco MA 0 164 0 
Mozambique MZ 0 27 0 
Myanmar MM 0 45 0 
Namibia NA 0 32 0 
Nepal NP 0 1 0 
Netherlands NL 7 1,702 4,631 
New Zealand NZ 0 235 0 
Nicaragua NI 0 18 0 
Niger NE 0 1 0 
Nigeria NG 0 86 0 
Norway NO 0 330 0 
Oman OM 0 37 0 
Pakistan PK 0 70 0 
Palestine PW 0 1 0 
Panama PA 0 128 0 
Papua New Guinea PG 0 22 0 
Paraguay PY 0 26 0 
Peru PE 0 129 0 
Philippines PH 0 335 0 
Poland PL 0 606 0 
Portugal PT 0 412 0 
Qatar QA 0 35 0 
Republic of Serbia RS 0 121 0 
Republic of the Congo CG 0 10 0 
Romania RO 0 270 0 
Russia RU 0 555 0 
Rwanda RW 0 6 0 
San Marino * SM 0 4 0 
Saint Kitts and Nevis KN 0 1 0 
Saint Lucia LC 0 7 0 
Saint Vincent and the Grenadines VC 0 2 0 
Samoa WS 0 6 0 
Saudi Arabia SA 0 188 0 
Senegal SN 0 22 0 
Seychelles SC 0 3 0 
Sierra Leone SL 0 2 0 
Singapore SG 0 943 0 
Slovakia SK 0 234 0 
Slovenia SI 0 120 0 
Solomon Islands SB 0 1 0 
South Africa ZA 0 540 0 
South Korea KR 11 647 12,639 
Spain ES 0 1,010 0 
Sri Lanka LK 0 38 0 
Sudan SD 0 5 0 
Suriname SR 0 1 0 
Swaziland SZ 0 5 0 
Sweden SE 5 620 2,485 
Switzerland CH 5 637 2,224 
Syria SY 0 4 0 
Taiwan, China TW 1 401 75 
Thailand TH 0 906 0 
The Bahamas BS 0 58 0 
Togo TG 0 5 0 
Tonga * TO 0 1 0 
Trinidad and Tobago TT 0 29 0 
Tunisia TN 0 85 0 
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(continued ) 

Country/ region Country/ region code Outgoing linkages Incoming linkages Number of CCMT-related patents 

Turkey TR 0 465 0 
Uganda UG 0 11 0 
Ukraine UA 0 259 0 
United Arab Emirates AE 0 298 0 
United Kingdom GB 8 3,600 4,474 
United Republic of Tanzania TZ 0 40 0 
United States of America US 51 21,637 31,972 
Uruguay UY 0 109 0 
Uzbekistan UZ 0 14 0 
Venezuela VE 0 135 0 
Vietnam VN 0 340 0 
Zambia ZM 0 22 0 
Zimbabwe ZW 0 28 0  
* Countries/regions included in statistical network analysis but excluded from econometric regression analysis. 

Appendix B. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.eneco.2024.107497. 
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A B S T R A C T

The escalating concentration of atmospheric carbon dioxide presents a critical challenge in mitigating climate 
change, necessitating more efficient and verifiable carbon sequestration strategies. This review critically ex
amines the integration of Internet of Things (IoT), Artificial Intelligence (AI), and blockchain technologies as a 
novel, synergic framework to enhance the efficacy, scalability, and transparency of carbon sequestration pro
cesses. IoT systems facilitate high-resolution, real-time environmental data acquisition is essential for monitoring 
carbon fluxes. AI methodologies enable advanced data analytics, predictive modeling, and optimization of 
carbon capture and storage mechanisms. Concurrently, blockchain technology provides a secure and immutable 
platform for transparent carbon accounting and verification. The article synthesizes current advancements and 
presents case studies that demonstrate practical applications and outcomes. Ethical considerations, technical 
limitations, and regulatory challenges are critically analyzed. Future research directions include the refinement 
of sensor networks, the development of adaptive machine learning algorithms, and the evolution of decentralized 
ledger systems tailored to environmental data. This integrated technological paradigm holds substantial potential 
to enhance carbon sequestration efforts, thereby contributing meaningfully to global climate change mitigation 
strategies.

1. Introduction

In recent times, the escalating impacts of climate change have 
brought forth an urgent need for innovative solutions (Agbor et al., 
2023). Addressing the rise in global temperatures, mitigating extreme 
weather events, and preserving vulnerable ecological systems have 
become imperatives of paramount importance (Lopez-Gomez et al., 
2023). At the crux of this challenge lies the vital task of efficient carbon 
sequestration, a linchpin in our collective endeavour to stabilize 
greenhouse gas concentrations and avert potentially catastrophic con
sequences (Kazemian and Shafei, 2023).

While traditional methods of carbon sequestration have played a 
crucial role, they grapple with logistical, financial, and technological 
constraints (Denich et al., 2019). These established approaches reveal 
their limitations when confronted with the monumental scale of the task 
before use (Chen et al., 2022).

In response, a new wave of transformative technologies has emerged, 
reshaping the landscape of carbon sequestration (Snæbjörnsdóttir et al., 

2020). This paradigm shift is propelled by the convergence of three 
pioneering forces: AI (Chen et al., 2023a), IoT (Mishra and Singh, 2021), 
and blockchain (Chen et al., 2023b). Together, they offer an unprece
dented opportunity to transcend the boundaries of conventional 
sequestration methods.

This review article embarks on an exploration of the interplay be
tween these cutting-edge technologies, uniting in a concerted effort to 
combat climate change. This endeavour transcends disciplinary 
boundaries, drawing from the realms of computer science, environ
mental engineering, and blockchain technology to forge a path forward.

Over the ensuing sections, we will embark on a journey through the 
distinct roles that AI, IoT, and blockchain play in advancing carbon 
sequestration. From the real-time data acquisition facilitated by the 
expansive networks of IoT to the predictive power of AI-driven models, 
and the immutable transparency provided by blockchain, these tech
nologies combine forces to confront the intricate challenges of carbon 
management.

Yet, their true potential lies not in isolation, but in the seamless 

* Corresponding author.
E-mail address: hossein.madi@psi.ch (H. Madi). 

Contents lists available at ScienceDirect

Energy Reports

journal homepage: www.elsevier.com/locate/egyr

https://doi.org/10.1016/j.egyr.2025.05.042
Received 11 March 2025; Received in revised form 8 May 2025; Accepted 15 May 2025  

Energy Reports 13 (2025) 5952–5967 

Available online 23 May 2025 
2352-4847/© 2025 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

mailto:hossein.madi@psi.ch
www.sciencedirect.com/science/journal/23524847
https://www.elsevier.com/locate/egyr
https://doi.org/10.1016/j.egyr.2025.05.042
https://doi.org/10.1016/j.egyr.2025.05.042
http://crossmark.crossref.org/dialog/?doi=10.1016/j.egyr.2025.05.042&domain=pdf
http://creativecommons.org/licenses/by/4.0/


integration into a cohesive ecosystem. This amalgamation holds the 
promise of unlocking hitherto uncharted dimensions of efficacy, her
alding a paradigm shift in our collective ability to combat climate 
change.

As we navigate this transformative terrain, we are acutely aware of 
the ethical and privacy considerations that accompany such progress. 
Balancing the imperative for technological innovation with the preser
vation of individual rights and liberties is a paramount facet of this 
evolving landscape.

In the pages that follow, we traverse this uncharted territory, pro
pelled toward a future where carbon sequestration transcends its sci
entific imperative to become a resounding technological triumph.

1.1. Novelties

The motivation for this research stems from the urgent need for more 
effective, scalable and transparent solutions to mitigate climate change. 
Traditional methods of carbon sequestration are often limited by in
efficiencies, lack of real-time data, and inadequate transparency. By 
integrating AI, IoT, and blockchain, this article seeks to address these 
limitations, offering a cohesive, data-driven approach to carbon man
agement that is both more efficient and trustworthy. The innovative 
application of these technologies promises to not only improve the 
current state of carbon sequestration but also provide a roadmap for 
future advancements that could play a critical role in combating climate 
change. 

• Integration of Cutting-Edge Technologies in carbon sequestra
tion: This article pioneers the integration of AI, IoT, and blockchain 
in the domain of carbon sequestration, an area traditionally 
approached with less technological sophistication. By combining 
these advanced technologies, the article proposes a forward-thinking 
solution that addresses the multifaceted challenges of carbon man
agement in real-time, offering greater scalability, efficiency, and 
accountability than existing methods.

• Synergistic potential for climate change mitigation: The article 
emphasizes how the synergy between AI, IoT, and blockchain can 
create a more robust and adaptive framework for carbon sequestra
tion. The novel approach provides not only technical solutions but 
also a holistic strategy that enhances the overall effectiveness of 
sequestration efforts. This integrated approach has the potential to 
outperform traditional methods, offering significant improvements 
in monitoring, optimization, and verification.

• Real-Time Monitoring and Data Collection with IoT: A key 
innovation in this work is the application of IoT for real-time 
monitoring and data acquisition, enabling continuous, dynamic 
tracking of carbon sequestration projects. This technology facilitates 
timely and highly accurate assessments of sequestration activities, 
enhancing decision-making processes and improving the overall 
management of carbon capture efforts.

• AI-Driven Optimization and Prediction Models: The application 
of AI in the optimization and prediction of carbon capture and 
storage represents a cutting-edge solution to enhance the efficiency 
of sequestration efforts. Machine learning algorithms offer the po
tential for more precise and adaptable strategies. This ensures that 
carbon capture efforts are not only more efficient but also tailored to 
evolving environmental and operational conditions.

• Transparent carbon accounting with blockchain: One of the most 
significant innovations in this article is the use of blockchain tech
nology to ensure transparent, immutable, and verifiable carbon ac
counting. This innovation addresses long-standing concerns over the 
integrity of carbon credit systems and project reporting, reducing the 
risk of fraud, inaccuracies, and double-counting. It ensures that 
sequestration efforts are auditable and traceable, providing stake
holders with confidence in the accuracy and legitimacy of carbon 
reduction claims.

• Case Studies and Demonstrations: The inclusion of real-world case 
studies and demonstrations provides concrete examples of successful 
projects that have leveraged the combined power of AI, IoT, and 
blockchain for carbon sequestration. This practical application re
inforces the feasibility and effectiveness of the proposed approach.

• Ethical and Privacy Considerations: The article acknowledges and 
addresses the ethical and privacy implications associated with the 
deployment of these technologies. This recognition reflects a con
scientious approach to the potential societal impacts of the proposed 
solutions.

• Comprehensive Overview and Future Directions: The article not 
only provides an in-depth exploration of the current state of these 
technologies in carbon sequestration but also offers insights into 
future research directions and potential advancements. This 
forward-looking perspective contributes to the ongoing discourse on 
climate change mitigation.

These novelties collectively position the review article as a signifi
cant contribution to the field, offering a comprehensive and forward- 
thinking perspective on the integration of AI, IoT, and blockchain in 
carbon sequestration efforts.

2. Carbon sequestration techniques and challenges

Carbon sequestration stands as a critical component in our fight 
against climate change, aiming to capture and store atmospheric carbon 
dioxide (CO2) in various natural or engineered reservoirs. Understand
ing the range of techniques and challenges associated with carbon 
sequestration is pivotal in formulating effective and sustainable strate
gies.

2.1. Natural carbon sequestration methods

2.1.1. Afforestation and reforestation
One of the most recognized natural methods for carbon sequestration 

involves afforestation, the deliberate establishment of forests in previ
ously non-forested areas, and reforestation, the restoration of depleted 
or degraded forests (Lal, 2005). These processes harness the 
carbon-absorbing power of trees, which accumulate CO2 through 
photosynthesis, storing it in their biomass and in the soil (Gorte, 2009). 
Through these methods, we have the potential to sequester substantial 
amounts of carbon over time. Based on the study developed by Burke 
et al. (2021), it is possible to map the existing barriers towards affor
estation in different parts of the world and obtain the afforestation 
capability of each region based on that. Burke et al. (2021) showed the 
example of the UK based on different scenarios as illustrated in ↱Fig. 1. 
As shown in this figure, 4.7 million ha will be available for planting for 
the UK, but the problem is the sustainability goals set by the UK to reach 
the carbon neutrality by 2050. Based on those, the UK needs to use 21 % 
of the available land with limited woodland expansion.

2.1.2. Ocean-Based Sequestration
Our oceans play an invaluable role in carbon sequestration. Phyto

plankton and marine organisms absorb CO2 from the atmosphere, and 
carbon is subsequently transported to the deep ocean through the bio
logical pump process (Buesseler et al., 2007). Additionally, researchers 
are exploring techniques such as ocean alkalinity enhancement, a form 
of geoengineering, as a means to augment carbon uptake in the oceans 
(Renforth and Henderson, 2017).

Regarding the carbon sequestration in the ocean, Shen et al. (2020)
emphasized on the harmful roles of microplastics as shown in ↱Fig. 2. 
The existence of microplastics in the ocean have adverse impacts on the 
growth and photosynthesis of phytoplankton and zooplankton leading 
to harmful results in their community and instability in the marine 
ecosystem. As shown by Sjollema et al. (2016), phytoplankton’ photo
synthetic rates will be reduced by 45 % after exposure to the 
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Fig. 1. The illustrated map by Burke et al. (2021) on the restrictive scenario for the afforestation of the UK. As shown, the white color mentions that there are no 
constraints, hence available for planting. The green indicator of the map demonstrates the potential for afforestation considering the existing barriers (Copyright 
license number: 5791630052614). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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microplastics (250 mg/L). The reason is due to the combination and 
aggregation of the phytoplankton to the decomposed microplastics.

2.2. Engineered carbon sequestration technologies

2.2.1. Direct air capture (DAC)
Emerging as a promising technology, DAC involves mechanically 

extracting CO2 directly from ambient air. This method is gaining trac
tion for its potential to capture CO2 emissions directly from industrial 
sources or from the atmosphere itself (Lackner, 2003). A common usage 
of DAC systems is to be integrated to the Solid Oxide Electrolysis Cells 
(SOEC) to improve the efficiency and the overall goal of carbon capture 
as shown in ↱Fig. 3 (Coppitters et al., 2023). Nonetheless, DAC faces 
challenges related to energy consumption and cost-effectiveness 
(Zeman, 2007). The system shown by Coppitters et al. (2023) is inter
esting specifically due to the size, which is double the existing com
mercial solid sorbent DAC units, with up to 4000 tCO2/year. In the 
adsorber of this system, carbon dioxide and water are adsorbed at 
ambient conditions. The sorbent will be regenerated at a desorption 
temperature of water boiling temperature at the saturated conditions 
that will result in a gas outlet stream.

2.2.2. Carbon capture and storage (CCS)
CCS represents a pivotal technology involving the capture of CO2 

emissions from industrial processes or power plants, followed by injec

tion into geological formations for long-term storage (Change, 2014). 
This technology is considered vital in reducing emissions from large 
point sources (Bui et al., 2018). However, it encounters challenges 
including the identification of suitable storage sites, ensuring long-term 
containment, and addressing public acceptance (Steffe and Gale, 1995). 
Based on the developed study by Deutz and Bardow (2021), in 2019, 
3683 DAC plants with the capacity of 100,000 tCO2/year were needed 
to capture one percent of the global annual Carbon Dioxide production.

2.3. Challenges in carbon sequestration

While these techniques hold promise, they are not without their 
challenges. ↱Table 1 presents the main existing challenges with the 
required description.

Addressing these challenges necessitates collaborative efforts across 
disciplines, bringing together scientists, engineers, policymakers, and 
stakeholders to advance the field of carbon sequestration and contribute 
to global climate goals.

3. The convergence of IoT and carbon sequestration

The innovative intersection of IoT technology and carbon seques
tration presents a revolution in how the vital task of capturing and 
storing carbon emissions can be approached. The collaboration between 
the IoT and the carbon sequestration processes promises to significantly 

Fig. 2. The illustrated carbon sequestration cycle in the ocean by Shen et al. (2020), where, DOC is Dissolved Organic Carbon, POC is the particulate organic carbon, 
LPOC is the labile dissolved organic carbon, and RPOC is the recalcitrant dissolved organic carbon. Phytoplankton and Zooplankton have important role in the carbon 
sequestration cycle in the ocean which will be affected negatively by the existence of microplastics. (Copyright license number: 5795461271415).
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enhance the effectiveness and efficiency of our efforts in carbon capture 
and storage.

3.1. Empowered monitoring with real-time data

By locating sensors across sequestration sites to continuously 
communicating the main servers with data streams on key parameters 
like CO2 levels, temperature, pressure, and soil conditions (Bui, 2020), 
the carbon sequestration process can be improved. This real-time data 
allows spotting the changes as they happen, enabling quick responses. 
For instance, if CO2 concentrations or environmental conditions shift 
suddenly, automated adjustments can kick in to optimize the seques
tration process. One of the similar projects in this field was developed by 
Li et al. (2019), where the ecosystem of soil including air, water, soil, 
carbon, and the ratio of 13 C and 12 C carbons were monitored using 
IoT-based systems as shown in the proposed structure in ↱Fig. 4. This 

suggested structure is made of three main steps, which are making smart 
ecosystem monitoring devices, networking the devices and integrating 
them with the information system using the IoT, and testing the appli
cability of the ecosystem monitoring IoT in a variety of typical 
ecosystems.

3.2. Fine-tuning through advanced analytics and AI

Powerful analytics and machine learning algorithms (Fuss et al., 
2018) should be implemented to enable the data streaming through IoT. 
The role of these machine learning algorithms is to uncover patterns, 
relationships, and irregularities. The AI allows fine-tuning sequestration 
operations. AI-driven models can predict the perfect injection rates, 
adjust for geological quirks, and minimize the risk of leaks based on 
real-time sensor feedback.

3.3. Providing early warnings for system protection

IoT systems have become vigilant guardians, raising the alarm if 
anything strays from the expected sequestration performance (Pidgeon 
et al., 2013). Anomalies in the data patterns can signal potential issues, 
like a potential breach in containment integrity or unexpected envi
ronmental influences. This timely heads-up empowers us to take swift 
corrective action, keeping the sequestration process safe and effective.

3.4. Remote monitoring: a digital blessing

With IoT in action, the sequestration sites can be monitored 
remotely. This is particularly invaluable for projects spread across 
diverse geographic locations. Maintenance schedules and interventions 
can be planned in advance strategically, guided by real-time data trends. 
In other words, IoT can act as a virtual team of experts on the ground, 
optimizing resource allocation (Steffe and Gale, 1995). As an example, 
Rajak et al. (2023). Integrated IoT and smart sensors for the optimized 
crop growth and remote monitoring, as shown in ↱Fig. 5. Electrome
chanical sensors, biosensors, and physical property sensors have key 

Fig. 3. A schematic of integrated DAC unit to the Solid Oxide Electrolysis Cell (SOEC) illustrated by Coppitters et al. (2023). The heat flows and the excess heat 
during methanation are also shown. The excess heat will be partially used to provide the remaining heat demand for the DAC through a condenser. (Copyright license 
number: 5795550875235).

Table 1 
The main challenges in the carbon sequestration.

Challenge Description

Economic viability Many carbon sequestration methods face economic 
barriers, such as high initial costs and uncertain revenue 
streams (Thamo et al., 2017).

Environmental impacts Some methods may have unintended environmental 
consequences, such as habitat disruption or alterations 
in ecosystem dynamics (Houghton, 2018).

Regulatory and policy 
frameworks

Developing effective regulatory frameworks and 
policies to govern carbon sequestration activities is 
critical for ensuring compliance, safety, and 
accountability (Gren and Aklilu, 2016).

Technological 
advancements

Continued research and development are essential for 
improving the efficiency, scalability, and cost- 
effectiveness of carbon sequestration technologies (
Fagorite et al., 2023).

Public Perception and 
Acceptance

Engaging communities and gaining public trust is 
crucial for the successful implementation of carbon 
sequestration projects (Tcvetkov et al., 2019).
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Fig. 4. The novel structure for the IoT based real-time control of ecosystem parameters proposed by Li et al. (2019). (Copyright license number: 5798951371163).

Fig. 5. The use case of IoT and smart sensors in advanced farming to monitor environmental parameters such as temperature, mass flow, moisture, humidity, nitrate 
levels, and water content (Rajak et al., 2023). The pest control can be done using advanced cameras, and unmanned aerial vehicles will help to control the crop 
growth. (Copyright license number: Open access under a Creative Commons License).
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usages in agricultural fields. Biological sensors enable biological sensi
tive components from the outside world, but physical property sensors 
employ devices sensitive to alterations in the physical environment.

3.5. Mindful of ethics and privacy

In addition to the technological aspects, the ethical and privacy 
considerations should be included as well (Renforth and Henderson, 
2017). It’s essential to safeguard individual rights and liberties while 
technological innovations are progressed. While the convergence of IoT 
and carbon sequestration represents a major leap forward, challenges 
may arise. Issues related to data security may be encountered in addition 
to the sensor reliability or ensuring that IoT devices can communicate 
seamlessly.

The integration of IoT technology into carbon sequestration projects 
marks a significant shift, offering a dynamic and data-driven framework 
for optimizing the efforts. By uniting interconnected sensors with 
advanced analytics, a new level of precision and adaptability in carbon 
capture and storage will be unlocked that creating a more sustainable 
and resilient future.

4. AI-driven optimization and prediction models

The inclusion of AI into carbon sequestration projects stands as a 
game-changer. AI brings a powerful set of tools to the table, using al
gorithms and machine learning to dissect complex datasets, spot trends, 
and make educated predictions. The implementation of this technology 
in carbon capture and storage unlocks a new level of precision and 
efficiency.

4.1. Seeing the future with AI

AI’s real talent lies in foreseeing outcomes based on historical data 
(Fuss et al., 2018). In carbon sequestration, this means AI can help to 

understand how factors like injection rates, geological conditions, and 
environmental variables will affect the sequestration efforts. AI enables 
real-time monitoring in addition to making sure that the entire process is 
running optimally.

4.2. Adaptability at its core

One of the most amazing things about AI is its ability to learn and 
adapt as it encounters new data (Bui, 2020). By the progress of carbon 
sequestration projects, AI continuously fine-tunes its understanding of 
the system. This adaptability ensures that the sequestration process 
becomes more efficient over time. The developed project by You et al. 
(2020) proposed the usage of machine learning to enable the optimi
zation of CO2 sequestration and oil recovery processes. ↱Fig. 6 Shows the 
suggested algorithm to achieve this goal. Based on the work by You et al. 
(2020), a field-scaled numerical simulation model was structured to 
analyzed the fluid dynamics of an actual CO2 sequestration project in the 
Farnsworth unit in Texax. In that model, AI based proxy models are 
developed to predict time-series project responses including hydrocar
bon production, CO2 storage, and reservoir pressure data. The outputs of 
the proxy model were also providing physical and economic constraints 
for the optimization of the oil recovery and the CO2 sequestration 
volume.

4.3. Navigating complexity

Carbon sequestration is a complex puzzle with numerous variables, 
each influencing the overall outcome. AI acts like a puzzle-solver, 
uncovering intricate relationships between factors that might not be 
immediately obvious. This skill is invaluable in optimizing injection 
strategies, selecting the right storage sites, and managing potential risks 
tied to geological formations.

Fig. 6. The proposed algorithm by You et al. (2020) for the optimization of CO2 sequestration and oil recovery processes. The algorithm starts with particle swarm 
optimization (PSO) followed by matching history with the produced data and including the multi-layer neural network to develop the proxy models that will be used 
in the optimization. PSO as a representative of a metaheuristic algorithm has the responsibility of reaching the optimized values while the neural model will be a 
representative of the physical phenomena of carbon storage and oil production. (Copyright license number: 5799010204293). Here RBF indicates the Radial 
Basis Function.
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4.4. Identifying and managing risks

AI excels at risk assessment, spotting potential challenges and vul
nerabilities in sequestration projects (Pidgeon et al., 2013). By sifting 
through historical data and simulating different scenarios, AI points out 
areas of concern and suggests ways to address them. This proactive 
approach minimizes the chances of unexpected setbacks, ensuring the 
sequestration efforts proceed with confidence. In the study developed by 
Al-Sakkari et al. (2024), AI was used as a tool to smooth the carbon 
sequestration operation by predicting the leakages of carbon dioxide, as 
shown in ↱Fig. 7. This operation will be based on using AI for the 
diagnosis and prognosis of carbon dioxide leakage from sequestration 
wells based on infrared imaging and seismic visualizations under human 
supervision.

4.5. Always getting better

AI fosters a culture of ongoing improvement. As more data is gath
ered, the models become sharper and more sophisticated (Renforth and 
Henderson, 2017). This process of continuous learning and refinement 
leads to innovative strategies for carbon sequestration. It’s an invitation 
to explore new approaches and technologies that could further enhance 
the sequestration outcomes.

4.6. Harmony with IoT and blockchain

The combination of AI, IoT, and blockchain technologies packs a 
powerful punch in carbon sequestration. AI uses the real-time data from 
IoT sensors to make dynamic decisions, while blockchain ensures the 
transparency and integrity of that data. Together, they form a trio that 
boosts the overall effectiveness and accountability of sequestration 
projects.

In conclusion, the integration of AI-driven optimization and predic
tion models marks a pivotal moment in the world of carbon sequestra
tion. This technology enables informed decisions, adapts to changing 
conditions, and continually refines the existing approach to enhance 

problem-solving. By tapping into the predictive capabilities of AI, a path 
towards more efficient and effective carbon capture and storage will be 
reached, ultimately contributing to a sustainable and resilient future.

5. Blockchain for transparent carbon accounting

In the pursuit of effective carbon sequestration, the role of block
chain technology emerges as a beacon of transparency and account
ability. Blockchain, often associated with cryptocurrencies, proves to be 
a transformative force in the realm of carbon accounting. It offers a 
decentralized ledger system that records every transaction or event, 
creating an immutable chain of information.

5.1. The promise of immutable records

At the heart of blockchain lies its ability to create unchangeable re
cords (Narayanan et al., 2016). In the context of carbon sequestration, 
this means every piece of data - from sequestration volumes to project 
details - is etched in digital stone. This transparency leaves no room for 
disputes or alterations, establishing a foundation of trust.

5.2. Enhancing accountability in carbon reporting

Blockchain ensures that every participant in the carbon sequestra
tion process, from project developers to auditors, has access to the same 
set of information. This shared ledger leaves no room for discrepancies 
or hidden data. In this regard, the culture of accountability will be 
improved.

One of the most critical elements of blockchain-enabled carbon ac
counting is the use of smart contracts. These self-executing scripts stored 
on the blockchain automatically trigger actions when predefined con
ditions are met. For instance, a smart contract can be programmed to 
issue a carbon credit token only when a third-party verifier uploads a 
certificate confirming a sequestration milestone has been reached. This 
automation reduces human intervention and the risk of manipulation, 
making the carbon credit issuance process more transparent and 

Fig. 7. The proposed methodology by Al-Sakkari et al. (2024) to detect the carbon dioxide leakage from the sequestration wells. (Copyright license number: 
5799011000749). Here, ANN, SVM, DT, LAD, GPR, RF, XGB, RNN, LSTM, GRU, and RL indicate the Artificial Neural Network, Support Vector Machine, Decision 
Tree, Linear Discriminant Analysis, Gaussian Process Regression, Radio Frequency, eXtreme Gradient Boosting, Recurrent Neural Network, Long Short-Term 
Memory, Gated Recurrent Units, and Reinforcement Learning, respectively.
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trustworthy.
Blockchain systems also rely on consensus mechanisms to validate 

transactions. In the context of carbon markets, Proof of Stake (PoS) is 
often preferred over energy-intensive methods like Proof of Work (PoW) 
to maintain environmental integrity. PoS systems validate transactions 
based on participants’ stake in the network, offering faster processing 
and lower energy consumption.

To ensure interoperability with carbon standards, many blockchain 
platforms incorporate metadata tagging and APIs that align with 
established protocols such as the Greenhouse Gas Protocol or Verra’s 
Verified Carbon Standard (VCS). This allows real-time synchronization 
of carbon data across different registries and enhances transparency for 
stakeholders, including governments, NGOs, and the public.

Another innovation is tokenization, where each verified carbon 
credit is converted into a digital token that can be traded on blockchain 
platforms. These tokens are often non-fungible to preserve their unique 
project characteristics, such as location, date, and methodology. Some 
platforms also implement traceability layers, allowing users to follow 
the lifecycle of a carbon credit, thus preventing double-counting or 
resale fraud.

Despite these advantages, challenges remain in areas such as legal 
recognition of blockchain records, cross-chain interoperability, and the 
technical complexity of integrating on-chain (blockchain) systems with 
off-chain (real-world) carbon projects. Nevertheless, the integration of 
these technical features positions blockchain as a powerful tool in 
building trust, scalability, and traceability in carbon accounting systems.

5.3. Tracing carbon credits with certainty

In the world of carbon markets, accurately tracking and verifying 
carbon credits is paramount. Blockchain provides a streamlined mech
anism for this. Each credit is tied to a unique, verifiable record on the 
ledger (Arasteh et al., 2020). This ensures that credits are not 
double-counted or fraudulently created, instilling confidence in the 
market. In this regard, Muzumdar et al. (2022) has proposed an Emis
sion Trading System (ETS) as shown in ↱Fig. 8 based on two transaction 
units of carbon credit (CC) and cash coin. The system operates on the 
three main processes of CC buying, selling, and trading using smart 
contracts.

5.4. Smart contracts for automated compliance

Smart contracts, self-executing contracts with the terms directly 
written into code, add another layer of automation and transparency 
(Kosba et al., 2016). They can be programmed to enforce compliance 
with regulatory requirements. For example, a smart contract could 
automatically retire carbon credits once they’ve been used, reducing the 
risk of double-spending.

5.5. Empowering stakeholders with real-time data

With blockchain, stakeholders can access real-time data on seques
tration projects (Tian et al., 2019). This includes details on carbon 
capture rates, storage integrity, and overall project performance. This 
real-time project’s data sharing empowers stakeholders with the infor
mation they need to make informed decisions.

5.6. Overcoming trust barriers

Trust has always been a central concern in carbon accounting. 
Blockchain addresses this by removing the need for a central authority 
or intermediary. Instead, trust is built into the system itself through 
cryptographic verification and consensus mechanisms (Swan, 2015). 
This decentralized approach fosters a more robust and reliable 
ecosystem.

5.7. Challenges and considerations

While blockchain holds immense promise, it’s not without its chal
lenges. Scalability, energy consumption, and regulatory frameworks are 
areas that require careful attention (Tapscott and Tapscott, 2016). 
Additionally, ensuring data privacy and security in a public blockchain 
network is a critical consideration.

In essence, blockchain technology brings a new level of integrity to 
carbon accounting. It introduces a level playing field where data is 
transparent, unchangeable, and accessible to all stakeholders. By 
leveraging blockchain’s capabilities, a path towards a more accountable 
and trustworthy approach to carbon sequestration will be made.

6. Integrating technologies for synergistic impact

Navigating the frontier of carbon sequestration, it becomes evident 
that the true power lies in the convergence of technologies. When AI, 
IoT, and blockchain come together, they create a synergistic force that 
transforms the existing approach to carbon capture and storage.

6.1. Harmonizing real-time insights with IoT

The Internet of Things is like the eyes and ears of the sequestration 
projects. Sensors and devices scattered across the project site continu
ously collect data on everything from temperature and pressure to car
bon dioxide concentrations (Tian et al., 2019). This real-time stream of 
information provides a level of insight previously unattainable. In this 
regard, the real-time optimization of the system becomes feasible.

6.2. AI as the cognitive engine

Artificial Intelligence steps in as the brain of the operation. It takes 
the influx of data from IoT and processes it with remarkable speed and 
precision (Fuss et al., 2018). AI can identify patterns, predict future 

Fig. 8. A schematic of the suggested Emission Trading System by Muzumdar et al. (2022). (Copyright license number: 5799020384560).
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trends, and even make autonomous decisions. AI can be considered an 
expert capable of analyzing vast amounts of information and distilling it 
into actionable insights. In the developed project by You et al. (2020), AI 
was used as a tool to predict the Oil production, and CO2 storage in 
sequestration projects as shown in ↱Fig. 9.

6.3. Blockchain’s immutable record

At the foundation of this technological trinity lies blockchain, 
providing an unchangeable ledger of every transaction, every data point, 
and every decision (Narayanan et al., 2016). It ensures that the infor
mation generated by IoT and analyzed by AI remains tamper-proof and 
trustworthy. This is similar to have an incorruptible archive, a testament 
to the integrity of the endeavors.

6.4. Smart contracts orchestrating operations

Smart contracts, powered by blockchain, serve as the orchestrators of 
the sequestration efforts (Kosba et al., 2016). They autonomously 
execute predefined actions based on the insights generated by AI and the 
data collected by IoT. For example, if certain conditions indicate the 
need for an adjustment in injection rates, a smart contract can initiate 
the change. It’s akin to having a dynamic conductor, fine-tuning the 
performance in real-time.

6.5. A collective intelligence ecosystem

The integration of these technologies creates an ecosystem where 
each component strengthens the others. IoT feeds AI with real-world 
data, empowering it to make more accurate predictions. AI, in turn, 
guides the decision-making process, ensuring that actions are based on 
data-driven insights. Blockchain secures the entire operation, providing 
an unassailable record of every event.

6.6. Ensuring ethical considerations

While marveling at the technological prowess, the human di
mensions must not be forgotten. Ethical and privacy considerations are 
paramount (Swan, 2015). While proceeding with these integrated 
technologies, a commitment should be made to safeguard individual 
rights and ensuring that the innovations benefit society as a whole.

6.7. The future of carbon sequestration

This integration is more than just a technological feat; it’s a glimpse 
into the future of carbon sequestration. It’s a testament to human 

ingenuity, showcasing the existing capabilities when cutting-edge 
technologies are integrated in the fight against climate change.

In this integrated landscape, not only efficiency and effectiveness is 
found but also a profound sense of possibility. It’s a frontier where 
technology and environmental stewardship join hands, propelling to
wards a future where carbon sequestration is not just a scientific ne
cessity, but a technological triumph.

7. Case studies and demonstrations

In examining the integration of IoT, AI, and blockchain technologies 
in carbon sequestration efforts, several noteworthy case studies and 
initiatives have emerged. These real-world projects exemplify the po
tential for transformative impact in the fight against climate change. 

• Microsoft’s Project Natick (Pellegrino et al., 2021): IoT-Enabled 
Underwater Data Centers 
• Microsoft’s Project Natick represents a groundbreaking initiative 

that explores the feasibility of deploying data centers underwater. 
Equipped with a sophisticated array of IoT sensors, these sub
merged data centers continuously collect a wealth of environ
mental data (Shelar et al., 2020). This includes critical parameters 
such as temperature, pressure, and carbon dioxide levels. This 
real-time data acquisition not only informs efficient data center 
operations but also presents an innovative approach to harnessing 
IoT for environmental monitoring and carbon sequestration.

• IBM’s Green Horizons Initiative (Kale and Ma, 2023): AI-Driven 
Air Quality Management 
• IBM’s Green Horizons Initiative is a pioneering effort that lever

ages artificial intelligence to enhance air quality management, 
particularly in urban environments. By employing advanced AI 
models, the initiative processes vast amounts of data from various 
sources (Li et al., 2021). These sources include IoT sensors, satellite 
imagery, and other environmental monitoring systems. This 
capability enables precise predictions of air quality patterns, 
facilitating targeted interventions to reduce emissions and 
enhance carbon sequestration efforts.

• Climate Ledger Initiative (Schulz and Feist, 2021): Blockchain for 
Carbon Accounting 
• The Climate Ledger Initiative is at the forefront of utilizing 

blockchain technology to revolutionize carbon accounting and 
emissions tracking. By employing distributed ledger technology, 
the initiative ensures transparent and immutable records of carbon 
credits and emissions data. This approach enhances trust and 
accountability in carbon markets, offering a robust framework for 
sustainable carbon sequestration strategies.

Fig. 9. The training method used by You et al. (2020) for the optimization of CO2 sequestration and oil recovery processes. The first proxy was aimed to predict oil 
production and carbon dioxide sequestration while the second one had the goal of predicting the average reservoir pressure change during the lifetime of the system. 
(Copyright license number: 5799010204293).
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• CarbonCure Technologies (Salehi, 2023): AI-Optimized Carbon 
Utilization 
• CarbonCure Technologies is a trailblazer in the field, employing 

artificial intelligence to optimize carbon dioxide utilization in 
concrete production. Through AI-driven algorithms, the company 
systematically analyzes data related to concrete mixtures and 
curing processes. This enables precise control over carbon dioxide 
incorporation, resulting in reduced emissions and enhanced car
bon sequestration within construction materials.

• Ocean Cleanup’s System 001 (Ramphal, 2021): IoT-Enabled Ma
rine Plastic Removal 
• The Ocean Cleanup’s System 001 stands as a testament to the 

power of IoT technology in addressing the global issue of marine 
plastic pollution. Equipped with an arsenal of sensors and satellite 
tracking capabilities, the system continuously monitors and col
lects data on the movement and concentration of plastic debris in 
oceans. This real-time information guides the efficient deployment 
of cleanup operations, contributing not only to ocean conservation 
but also to carbon sequestration efforts.

• Carbon Engineering’s DAC Facility (Izikowitz, 2021): 
AI-Enhanced Carbon Removal 
• Carbon Engineering’s DAC facility is an exemplary application of 

AI-driven optimization to enhance carbon dioxide removal from 
the atmosphere. AI algorithms continuously analyze operational 
data to fine-tune the capture process. This dynamic adjustment 
maximizes efficiency and minimizes energy consumption, exem
plifying a cutting-edge approach to carbon sequestration.

• Google’s DeepMind for Cooling Data Centers (Al Munem et al., 
2023): AI-Optimized Energy Efficiency 
• Google’s collaboration with DeepMind in optimizing data center 

cooling showcases the remarkable potential of AI in energy effi
ciency. Through the application of deep reinforcement learning, 
the project achieved significant reductions in energy consumption 
for data center cooling. This achievement not only demonstrates 
the power of AI in sustainable practices but also contributes to 
carbon footprint reduction in data center operations.

• Sony CSL’s OpenAI Project (Alto, 2023): AI-Enhanced Renewable 
Energy Integration 
• Sony Computer Science Laboratories, Inc.’s OpenAI project rep

resents a notable endeavor to harness the power of AI in inte
grating renewable energy sources into the electrical grid (Verma, 
2021). Through the application of advanced algorithms and ma
chine learning techniques, the project seeks to optimize the utili
zation of renewable energy, ultimately contributing to reduced 
carbon emissions in the energy sector.

• Walmart’s Blockchain-Based Food Traceability (Xu et al., 2020): 
Carbon Footprint Reduction 
• Walmart’s pioneering use of blockchain technology in food 

traceability is a multifaceted initiative with significant environ
mental implications. By leveraging distributed ledger technology, 
Walmart enables transparent and immutable tracking of food 
products through the supply chain (Westerlund et al., 2021). This 
not only enhances food safety but also contributes to the reduction 
of carbon emissions associated with food production and 
distribution.

• Tesla’s Gigafactories (Cooke, 2021): Sustainable Energy Pro
duction with AI Integration 
• Tesla’s Gigafactories represent a transformative paradigm in sus

tainable energy production. By integrating advanced 
manufacturing technologies with renewable energy sources, Tesla 
aims to produce electric vehicles and energy storage solutions at an 
unprecedented scale. The incorporation of AI technologies within 
these Gigafactories further optimizes production processes, ulti
mately contributing to the reduction of carbon emissions associ
ated with traditional manufacturing.

• Maersk’s Carbon Accounting with Blockchain (Wong et al., 
2023): Maritime Industry Innovation 
• Maersk, a global leader in container shipping, has embarked on a 

ground-breaking initiative to leverage blockchain technology for 
carbon accounting in the maritime industry. Through the appli
cation of distributed ledger technology, Maersk aims to provide 
transparent and verifiable documentation of carbon emissions 
associated with shipping operations. This initiative not only en
hances transparency but also contributes to the overall reduction 
of carbon emissions in the shipping industry.

• Siemens’ MindSphere IoT Platform for Industrial Sustainability 
(Kulawiak, 2021) 
• Siemens’ MindSphere IoT platform is a powerful tool for 

advancing industrial sustainability. By integrating IoT technolo
gies, Siemens enables comprehensive data collection and analysis 
within industrial environments. This facilitates informed decision- 
making for optimizing energy efficiency, reducing resource con
sumption, and ultimately minimizing carbon emissions in indus
trial processes.

• Sprint’s IoT for Fleet Management (Zhang et al., 2020) Carbon 
Emissions Reduction 
• Sprint’s utilization of IoT technologies in fleet management rep

resents a significant step towards reducing carbon emissions in 
transportation. Through the integration of IoT sensors within ve
hicles, Sprint enables real-time monitoring of key performance 
metrics such as fuel efficiency and vehicle maintenance. This data- 
driven approach empowers companies to make informed decisions 
that lead to the reduction of carbon emissions associated with their 
fleets.

• Nestle’s Blockchain-Based Supply Chain Transparency (Скаско 
et al. 2021): Carbon Accountability 
• Nestle’s adoption of blockchain technology for supply chain 

transparency has far-reaching implications for carbon account
ability. By leveraging distributed ledger technology, Nestle es
tablishes an immutable record of product origin, processing, and 
distribution (Schilhabel et al., 2023). This not only enhances 
product traceability but also contributes to the reduction of carbon 
emissions associated with supply chain operations.

• Amazon’s AI-Powered Energy Optimization in Fulfillment Cen
ters (Varghese, 2022) 
• Amazon’s innovative use of AI technologies for energy optimiza

tion in fulfillment centers demonstrates the potential for signifi
cant carbon emissions reduction in the logistics industry. Through 
the deployment of AI algorithms, Amazon optimizes energy usage 
based on real-time data and operational patterns. This results in 
increased energy efficiency and a corresponding reduction in the 
carbon footprint of fulfillment center operations.

In addition to the above-mentioned case studies, followings are 
the real systems exist for carbon sequestration:

• Climeworks (Switzerland/Iceland) 
• Climeworks is a company specializing in direct air capture (DAC) 

technology, working with Carbfix in Iceland to mineralize 
captured CO2 underground. The system utilized IoT sensors for 
environmental monitoring and is exploring blockchain for credit 
verification.

• Northern Lights Project (Norway) 
• A pioneering full-scale carbon capture and storage project backed 

by Equinor, Shell, and TotalEnergies. It captures CO2 from indus
trial sites, transports it via ship, and stores it under the North sea 
seabed. The project is exploring digital twins and AI for opera
tional efficiency.

• CarbonCure (Canada) 
• Integrates CO2 into concrete production, locking it in the building 

material. They’re using AI to optimize CO2 usage and emissions 
reduction per batch of concrete.
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These expanded case studies provide in-depth insights into successful 
projects that have harnessed the combined power of IoT, AI, and 
blockchain technologies for carbon sequestration. They not only 
demonstrate the efficacy of these integrated approaches but also offer 
valuable insights for the broader implementation of innovative tech
nologies in the fight against climate change. ↱Table 2 shows a structured 
categorization of each case study by organization/project, technology 
used, application area, and impact on carbon sequestration or emission 
reduction.

7.1. Technology implementation on local commodities and its implications

The integration of AI, IoT, and blockchain technologies holds sig
nificant potential for transforming carbon management practices in 
sectors tied to local commodities. In agriculture, for instance, IoT sen
sors can be deployed to monitor critical parameters such as soil mois
ture, nutrient levels, and carbon content in real time. Combined with AI- 
driven analytics, these systems can optimize irrigation and fertilizer 
application, thereby enhancing soil health and promoting carbon 
sequestration through regenerative farming practices. Blockchain tech
nology can further support this transformation by creating transparent 
and verifiable records of sustainable practices, enabling farmers to 
participate in carbon credit markets. This approach not only contributes 
to emissions reduction but also creates new revenue streams for rural 
communities.

In forestry, which often plays a vital role in national carbon sinks, the 
use of AI and IoT can significantly improve monitoring and manage
ment. Remote sensing technologies, including drones equipped with AI- 
based image analysis, can track forest growth, health, and deforestation 
activities. IoT-based ground sensors provide additional insight into soil 
and ecosystem conditions. Blockchain can be used to document con
servation efforts and carbon offset credits in a tamper-proof manner. 
These technologies empower local and indigenous communities to 
engage in decentralized forest management, ensuring accountability 
while supporting livelihoods tied to ecosystem preservation.

Livestock and dairy farming, another key sector in many regions, can 
also benefit from these technologies. IoT-enabled wearable devices can 
track animal health and methane emissions, while AI models can opti
mize feeding strategies to reduce greenhouse gas emissions. Blockchain 
platforms offer transparent traceability in sustainable meat and dairy 
production, thereby increasing consumer trust and market value. These 
interventions collectively support a shift toward climate-smart livestock 
systems, balancing productivity with sustainability.

The energy sector, particularly renewable energy initiatives such as 
solar, wind, and biomass, also stands to gain from the integration of 
digital technologies. AI algorithms can forecast energy demand and 
optimize supply, while IoT devices continuously monitor generation 
efficiency. Blockchain solutions enable the secure trading of clean en
ergy certificates and decentralized energy transactions. Together, these 
innovations enhance grid reliability and support the scaling of low- 
carbon energy systems, further reducing emissions at the source.

By focusing on these locally relevant sectors, the application of 
emerging technologies not only enhances carbon sequestration and 
emissions management but also drives broader socio-economic benefits. 
These include job creation, improved data-driven decision-making, and 
increased access to sustainable development opportunities. Therefore, 
the localization of technological frameworks is essential for ensuring the 
long-term viability and scalability of climate mitigation efforts.

8. Policy and regulatory considerations

As the integration of IoT, AI, and blockchain technologies gains 
momentum in carbon sequestration efforts, it is imperative to assess the 
necessary policy and regulatory frameworks. These frameworks play a 
pivotal role in providing a conducive environment for the widespread 
adoption of these technologies and ensuring their effective 

Table 2 
Summary of case studies involving AI, IoT, and blockchain for carbon 
sequestration.

Project/ 
Organization

Technology 
used

Application area Impact on carbon 
sequestration

Microsoft – 
Project 
Natick

IoT Underwater data 
centers & 
environmental 
monitoring

Real-time 
environmental data for 
optimizing operations; 
potential use for 
environmental sensing

IBM – Green 
Horizons

AI, IoT Urban air quality 
and pollution 
prediction

AI-based emission 
forecasting; supports 
better policy and urban 
planning

Climate Ledger 
Initiative

Blockchain Carbon markets 
and accounting

Transparent, 
immutable carbon 
credit tracking; 
enhances trust in 
carbon markets

CarbonCure 
Technologies

AI Carbon utilization 
in concrete

Embeds CO₂ in 
concrete; reduces 
carbon footprint in 
construction

Ocean Cleanup 
– System 001

IoT, Satellite 
tracking

Marine plastic 
removal

Indirect impact via 
cleaner oceans and 
improved carbon sinks

Carbon 
Engineering 
(DAC)

AI Direct air capture 
(DAC)

AI optimizes CO₂ 
capture process, 
improving energy 
efficiency and removal 
capacity

Google – 
DeepMind

AI Data center cooling Significant reduction 
in energy use and 
related emissions

Sony CSL – 
OpenAI 
Project

AI Renewable energy 
integration

AI enhances energy 
distribution and lowers 
fossil fuel reliance

Walmart – 
Blockchain 
Traceability

Blockchain Food supply chain Reduces emissions 
from inefficient 
logistics and food 
waste

Tesla – 
Gigafactories

AI, Renewable 
Energy

Sustainable 
manufacturing

Scales green tech 
production; AI-driven 
process efficiencies

Maersk – 
Carbon 
Accounting

Blockchain Shipping industry 
carbon accounting

Transparent emissions 
tracking in maritime 
logistics

Siemens – 
MindSphere

IoT Industrial 
sustainability

Optimizes resource use 
and energy efficiency

Sprint – Fleet 
Management

IoT Transportation Real-time fuel and 
maintenance tracking; 
reduces transport 
emissions

Nestle – Supply 
Chain 
Transparency

Blockchain Food supply chain Immutable product 
traceability; supports 
lower-emission 
sourcing and logistics

Amazon – 
Energy 
Optimization

AI Fulfillment centers AI-based dynamic 
energy management 
reduces carbon 
footprint

Climeworks 
(w/ Carbfix)

IoT, AI, 
Blockchain (in 
progress)

Direct air capture 
and mineralization

Permanent CO₂ 
removal; blockchain 
planned for credit 
verification

Northern Lights 
Project

AI (digital 
twins)

Industrial CCS and 
offshore storage

Scalable CO₂ capture 
and secure 
underground storage

CarbonCure 
(also listed 
above)

AI Green building 
materials

Reduces lifecycle 
emissions of 
construction by 
locking in CO₂
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implementation in mitigating climate change. At the current state, most 
global and regional regulatory frameworks are still evolving to keep 
pace with the rapid advancement of these technologies. Several real- 
world issues must be acknowledge before proposing forward-looking 
solutions.

8.1. Current policy gaps and real-world challenges

Despite growing interest in digital solutions for climate action, many 
countries lack dedicated policies addressing the integration of IoT, AI, 
and blockchain into carbon management. For example, regulations 
surrounding IoT deployment often fail to specify standards for secure 
environmental data transmission or long-term storage, leading to 
inconsistent implementation across projects. Moreover, AI applications 
in carbon optimization and monitoring frequently operate in regulatory 
grey zones, with limited guidance on ethical use, bias mitigation, or 
algorithmic accountability.

In the blockchain space, the absence of standardized protocols for 
digital carbon credits and emission tracking results in fragmented efforts 
that hinder trust and scalability. Different jurisdictions apply varying 
degrees of oversight, and many lack legal recognition for blockchain- 
based records. Furthermore, existing carbon markets are often criti
cized for their lack of transparency, weak verification mechanisms, and 
susceptibility to greenwashing or fraud.

There is also a lack of interoperability between national and inter
national systems, which complicates data sharing and the harmoniza
tion of standards. Without cohesive policies, even the most advanced 
technologies risk being underutilized or misapplied in carbon seques
tration projects.

8.2. Establishing clear standards for data privacy and security

The deployment of IoT technologies for real-time data acquisition in 
carbon sequestration necessitates robust measures to safeguard data 
privacy and security. Regulatory bodies must collaborate with technol
ogy stakeholders to establish clear standards and guidelines. These 
standards should encompass data encryption, access control, and secure 
transmission protocols. Additionally, mechanisms for informed consent 
and transparent data handling practices should be integrated to ensure 
compliance with privacy regulations (Shayesteh et al., 2020).

8.3. Addressing ethical implications of AI in carbon sequestration

The utilization of AI-driven optimization and prediction models 
raises ethical considerations, particularly concerning decision-making 
processes. Regulatory frameworks should encourage transparency and 
accountability in AI algorithms, ensuring they prioritize environmental 
and societal well-being. Additionally, mechanisms for addressing bias, 
fairness, and accountability in AI applications should be established to 
foster trust and ethical deployment (Roberts et al., 2022). The main 
pillars to reach the accepted robustness, lawfulness, and ethics in AI are 
presented in ↱Table 3.

8.4. Blockchain and Transparent Carbon Accounting: Regulatory 
Oversight

The implementation of blockchain for transparent carbon accounting 
requires a regulatory framework that ensures integrity and accuracy in 
emissions reporting. Smart contracts and consensus mechanisms should 
align with established emissions protocols. Regulatory bodies should 
work in tandem with industry experts to develop and enforce standards 
for blockchain-enabled carbon accounting, reducing the potential for 
fraud or inaccuracies (Schletz et al., 2020)

8.5. Incentivizing technology adoption through carbon markets

To encourage the widespread adoption of IoT, AI, and blockchain 
technologies in carbon sequestration, regulatory bodies should explore 
mechanisms such as carbon markets. These markets can provide finan
cial incentives for organizations and projects that implement innovative 
technologies for carbon reduction. Establishing clear guidelines for 
participation and accreditation within carbon markets will be essential 
in driving technological advancements. However, it’s important to 
acknowledge that the effectiveness of carbon markets can vary based on 
regional and industry-specific factors, and ongoing monitoring and 
adjustment of policies will be crucial (Qi et al., 2021).

8.6. International collaboration and harmonization of standards

Given the global nature of climate change, international collabora
tion is paramount in establishing cohesive regulatory frameworks. 
Regulatory bodies should engage in dialogue to harmonize standards 
and guidelines for the integration of IoT, AI, and blockchain technolo
gies in carbon sequestration efforts. This collaborative approach will 
ensure consistency and effectiveness across regional and international 
initiatives. However, it’s important to note that achieving consensus on 
global standards may require diplomatic negotiations and ongoing co
ordination among participating nations (Agreement, 2015).

Incorporating these policy and regulatory considerations will be 
instrumental in creating an enabling environment for the successful 
integration of IoT, AI, and blockchain technologies in carbon seques
tration efforts. By addressing privacy, ethics, accountability, and inter
national collaboration, regulatory frameworks can play a pivotal role

9. Addressing ethical and privacy concerns

As embarked on this technological frontier to revolutionize carbon 
sequestration through the integration of IoT, AI, and blockchain, it is 
essential to navigate potential ethical and privacy considerations. These 
cutting-edge technologies, while promising, bring forth a range of con
cerns that must be thoughtfully addressed to ensure responsible and 
equitable implementation.

9.1. Ensuring fairness and equity in AI-driven solutions

The application of AI in carbon sequestration introduces questions of 
fairness and equity. It is imperative to scrutinize algorithms for biases 
that may inadvertently disadvantage certain communities or regions. 
Striving for transparency in algorithmic decision-making and actively 
seeking to mitigate biases is crucial in ensuring that the benefits of 
technological advancement are distributed equitably (Hagendorff, 
2022).

9.2. Balancing innovation with data privacy

The extensive data collection inherent in IoT networks for real-time 
monitoring raises important privacy considerations. It is essential to 
establish clear protocols for data handling, storage, and access. Ano
nymization techniques and strict access controls should be employed to 

Table 3 
The main pillars and requirements to reach trustworthy AI for carbon 
sequestration projects inspired by Cannarsa (2021).

Pillar Description

1 Human agency and oversight
2 Technical robustness and safety
3 Privacy and data governance
4 Transparency
5 Diversity, non-discrimination, and fairness
6 Societal and environmental well-being
7 Accountability
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safeguard individual privacy rights. Additionally, providing individuals 
with informed consent regarding data collection practices is paramount 
(Van den Hoven et al., 2012).

9.3. Transparency and accountability in blockchain-based carbon 
accounting

While blockchain offers unprecedented transparency in carbon ac
counting, it also raises questions about data integrity and accountability. 
Smart contracts and consensus mechanisms should be designed with 
transparency and auditability in mind. Furthermore, mechanisms for 
dispute resolution and error correction should be in place to address 
potential inaccuracies in recorded data (Kshetri, 2017).

9.4. Engaging stakeholders and communities

Ethical considerations extend beyond technology itself to encompass 
the broader engagement of stakeholders and affected communities. In
clusive decision-making processes and community consultations should 
be prioritized. Ensuring that the deployment of these technologies aligns 
with local values and addresses community needs is fundamental to 
ethical implementation (Gupta, 2014).

Addressing these ethical and privacy concerns is pivotal in building 
public trust and ensuring the responsible deployment of IoT, AI, and 
blockchain technologies in carbon sequestration. By prioritizing fair
ness, transparency, and community engagement, a path towards tech
nological solutions can be forged that not only combats climate change 
but also does so with integrity and respect for all stakeholders involved.

10. Future directions, challenges, and research priorities

The integration of IoT, AI, and blockchain presents a dynamic 
landscape with numerous opportunities for innovation. This section 
identifies key areas for further exploration and discusses potential ad
vancements on the horizon.

10.1. Enhancing machine learning algorithms for predictive modelling

While AI has shown immense promise in optimizing carbon capture 
and storage, there is room for refinement. Future research should focus 
on enhancing machine learning algorithms to improve the accuracy and 
adaptability of predictive models. This includes incorporating more 
comprehensive datasets and exploring advanced modelling techniques 
such as deep learning (Ließ et al., 2016).

10.2. Exploring decentralized ledger technologies for enhanced 
transparency

The potential of blockchain in transparent carbon accounting is 
immense, but there is ongoing research into even more efficient and 
scalable decentralized ledger technologies. Future studies may include 
the development of novel consensus mechanisms and smart contract 
platforms to further enhance transparency and accountability in carbon 
sequestration efforts (Chen et al., 2018).

10.3. Integrating sensor networks for comprehensive environmental 
monitoring

The IoT ecosystem can be expanded to incorporate a wider array of 
sensors for holistic environmental monitoring. Future research should 
explore the integration of diverse sensor technologies to capture a 
broader spectrum of environmental data, allowing for more nuanced 
and accurate assessments of carbon sequestration projects (Li et al., 
2019).

10.4. Evaluating the ecological impact of carbon sequestration efforts

While the focus has primarily been on carbon capture and storage, it 
is crucial to assess the broader ecological implications. Future research 
should delve into comprehensive environmental impact assessments to 
understand how carbon sequestration initiatives influence ecosystems, 
biodiversity, and other vital ecological factors (Pan et al., 2019).

These future directions and research priorities represent a roadmap 
for the continued advancement of the integration of IoT, AI, and 
blockchain in carbon sequestration efforts. By pushing the boundaries of 
technology and knowledge, a more sustainable and resilient future will 
be made in the fight against climate change.

10.5. Challenges and limitations of emerging technologies in carbon 
sequestration

While the integration of IoT, AI, and blockchain offers trans
formative potential for carbon sequestration, it is crucial to acknowledge 
the associated challenges and limitations that may hinder their effec
tiveness and scalability. One significant issue lies in the technological 
infrastructure and accessibility, particularly in developing regions. 
Many carbon sequestration projects are located in remote or rural areas 
where stable internet connectivity, sensor deployment infrastructure, 
and access to cloud computing resources remain inadequate, limiting 
the practical implementation of these technologies.

Data privacy and cybersecurity pose another critical challenge. IoT 
systems collect vast amounts of environmental and operational data, 
often in real time. Without robust safeguards, this data may be vulner
able to breaches or misuse. Similarly, AI algorithms can be opaque or 
biased, especially when trained on limited or non-representative data
sets. This can lead to skewed results or decisions that fail to reflect on- 
the-ground realities, especially in complex ecosystems or diverse 
communities.

In the case of blockchain, scalability and energy consumption are 
persistent concerns. Although blockchain enables transparent and 
immutable records, many consensus mechanisms (e.g., Proof of Work) 
consume significant energy, potentially offsetting some of the carbon 
reduction goals. Additionally, regulatory uncertainties and interopera
bility issues between different blockchain platforms create barriers for 
wide-scale adoption and integration with existing systems.

There are also economic and social implications. The upfront costs of 
deploying IoT sensors, training AI models, or developing blockchain 
infrastructure can be prohibitive for small-scale projects or communities 
with limited funding.

Lastly, there is a governance and accountability gap. Clear roles, 
responsibilities, and oversight mechanisms are still emerging for how 
these technologies should be deployed and who should own or control 
the resulting data and systems. Without inclusive and transparent 
governance models, the deployment of these technologies could exac
erbate existing inequalities or fail to gain public trust.

11. Conclusion

The integration of IoT, AI, and blockchain technologies represents a 
ground-breaking advancement in the pursuit of efficient carbon 
sequestration. This comprehensive review has illuminated the remark
able synergies that arise when these cutting-edge technologies converge 
to combat climate change.

Through the expansive networks of IoT, real-time data acquisition 
has emerged as a linchpin, providing a dynamic feedback loop that 
empowers precise and timely assessment of carbon sequestration pro
jects. Meanwhile, AI-driven optimization and prediction models have 
demonstrated their transformative potential in revolutionizing the effi
ciency of carbon capture and storage. These machine learning algo
rithms hold the key to unlocking even more accurate and adaptable 
strategies in the future.
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The advent of blockchain technology has ushered in a new era of 
transparency and accountability in carbon accounting. Its immutable 
ledger ensures an unassailable record of sequestration efforts, mitigating 
the potential for fraud or inaccuracies. This technological triumph is 
poised to reshape the landscape of carbon management, setting a new 
standard for integrity in environmental stewardship.

As we navigate this transformative terrain, ethical and privacy con
siderations remain paramount. Striking a balance between technological 
innovation and safeguarding individual rights stands as a critical facet of 
this evolving landscape. Clear regulatory frameworks and ethical 
guidelines must accompany technological advancement to ensure 
responsible deployment.

Looking ahead, the evolution of machine learning algorithms, 
decentralized ledger technologies, sensor integration, and ecological 
impact assessments promises to amplify the efficacy of carbon seques
tration efforts. The integration of diverse sensor technologies holds the 
potential to provide even more nuanced and accurate assessments of 
environmental parameters. Additionally, a more comprehensive un
derstanding of the ecological impact of carbon sequestration initiatives 
will be vital in crafting holistic and sustainable strategies.

In conclusion, this review article not only serves as a comprehensive 
resource for researchers and practitioners but also sounds a clarion call 
for continued research and development in this critical field. By 
embracing innovation, collaboration, and ethical considerations, we are 
poised to unlock the full potential of these technologies, propelling us 
toward a more sustainable and resilient future in the fight against 
climate change. The time for action is now, and the integration of IoT, 
AI, and blockchain stands as a beacon of hope in our collective efforts to 
combat one of the greatest challenges of our time.
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Abstract Across the globe, governments are devel-
oping policies and strategies to reduce carbon emis-
sions to address climate change. Monitoring the impact
of governments’ carbon reduction policies can signif-
icantly enhance our ability to combat climate change
and meet emissions reduction targets. One promising
area in this regard is the role of artificial intelligence
(AI) in carbon reduction policy and strategy monitor-
ing. While researchers have explored applications of
AI on data from various sources, including sensors,
satellites, and social media, to identify areas for car-
bon emissions reduction, AI applications in tracking
the effect of governments’ carbon reduction plans have
been limited. This study presents an AI framework
based on long short-term memory (LSTM) and statis-
tical process control (SPC) for the monitoring of varia-
tions in carbon emissions, using UK annual CO2 emis-
sion (per capita) data, covering a period between 1750
and 2021. This paper used LSTM to develop a surro-
gate model for the UK’s carbon emissions characteris-
tics and behaviours. As observed in our experiments,
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LSTM has better predictive abilities than ARIMA,
Exponential Smoothing and feedforward artificial neu-
ral networks (ANN) in predicting CO2 emissions on
a yearly prediction horizon. Using the deviation of
the recorded emission data from the surrogate process,
the variations and trends in these behaviours are then
analysed using SPC, specifically Shewhart individ-
ual/moving range control charts. The result shows sev-
eral assignable variations between the mid-1990s and
2021, which correlate with some notable UK govern-
ment commitments to lower carbon emissions within
this period. The framework presented in this paper can
help identify periods of significant deviations from a
country’s normal CO2 emissions, which can potentially
result from the government’s carbon reduction policies
or activities that can alter the amount of CO2 emissions.

Keywords Carbon emissions · LSTM · Statistical
process control · Artificial intelligence · Climate
change · Energy policy · Deep learning · ARIMA ·
Exponential smoothing · ANN

Introduction

Climate change is one of the most pressing global envi-
ronmental issues, with carbon emissions contributing
significantly. Due to the urgency of this issue, gov-
ernments across the world have developed and imple-
mented various policies and plans to reduce carbon
emissions. Examples of these efforts include the Paris
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Agreement (Dimitrov, 2016), the US Environmental
Protection Agency’s Clean Power Plan (U.S. Environ-
mental Protection Agency, 2016) and the UK’s Sixth
Carbon Budget (Committee on Climate Change, nd).
Crucial aspects of these policies include incentivis-
ing renewable energy sources, promoting energy effi-
ciency, and implementing carbon pricing mechanisms.
Even though these carbon reduction policies can help
to reduce future carbon emissions, monitoring their
impact is essential but daunting.

Carbon emissions are the product of diverse oper-
ations, including manufacturing, transportation, and
agriculture. As such, monitoring all of these emissions
requires a vast amount of data aggregated from mul-
tiple sources. In addition to the difficulty in obtain-
ing these data due to a lack of transparency in the
industrial reportage of emissions data (Deane et al.,
2017), the monitoring process is complex and requires
advanced computations. Technologies such as deep
learning (LeCun et al., 2015) and statistical pro-
cess control (SPC) (Oakland & Oakland, 2018) have
evolved as effective computational techniques for data
analysis and process monitoring, with applications in
several sectors, including manufacturing, healthcare,
and finance. This study explores the applications of
these technologies in environmental monitoring, con-
sidering the impact of governments’ carbon reduction
initiatives, using UK annual CO2 emission (per capita)
data from 1750 to 2021 (Ritchie et al., 2020).

Recurrent Neural Networks (RNNs) are the most
popular deep learning architecture for time series anal-
ysis because they can model sequential data, using
the output of past time steps as inputs to the cur-
rent time step (Medsker & Jain, 2001). The feed-
back connections in RNN and its variants make them
suitable for processing audio, videos, and texts, with
applications in machine translation (Wu et al., 2016),
handwriting recognition (Graves et al., 2008), speech
recognition (Zia & Zahid, 2019), robot control (Mayer
et al., 2006), and time series analysis (Karim et al.,
2017; Siami-Namini et al., 2018a). Standard RNNs
struggle with modelling long-term dependencies due
to their susceptibility to the vanishing gradient prob-
lem. To solve the vanishing gradient issue in RNN,
Long Short-Term Memory (LSTM) has been intro-
duced (Hochreiter & Schmidhuber, 1997). LSTMs
learn long-dependencies by incorporating a memory
cell that selectively retains or forgets information from
previous time steps. In contrast to traditional time series

models, like autoregressive integrated moving aver-
age (ARIMA) model (Shumway et al., 2017), which
often require strong pre-existing assumptions about the
underlying data distribution and relationships between
variables, deep learning techniques such as LSTMs can
learn sequential representations without the need for
such suppositions, making them effective in modelling
complex, non-linear relationships (Karim et al., 2017;
Siami-Namini et al., 2018b). Moreover, unlike tradi-
tional time series models, which often use seasonal
dummies to capture the effect of seasonality, includ-
ing annual seasonality, ANN, such as LSTM models,
do not typically use dummies for seasonal effects, as
they can capture seasonal patterns implicitly (Heshma-
tol Vaezin et al., 2022; Zhang & Qi, 2005).

In this study, we first compared the performances of
LSTM, ARIMA, Exponential Smoothing (Ostertagová
& Ostertag, 2011) and feedforward ANN (Sazli, 2006)
in predicting CO2 emissions on a yearly prediction
horizon. Due to its superior performance compared
to other models, LSTM was selected for develop-
ing a surrogate model of the UK’s carbon emissions
characteristics and behaviours based on the experi-
ment’s outcomes. Using SPC, specifically the Shewhart
individual-moving range (I-MR) control chart, we eval-
uate the variations and trends in these behaviours using
the deviations of the recorded emission data from the
surrogate process. SPC is a statistical technique that
can provide insight into the variability within a process.
With SPC techniques, it is possible to spot and interpret
anomalies or unusual changes in the emissions data.
The combination of deep learning and SPC, which has
successfully been used in analysing SCADA data asso-
ciated with wind turbines (Udo & Muhammad, 2021),
can provide an effective tool for monitoring the impact
of the efforts by the UK government to reduce carbon
emissions.

The contributions of this paper can be summarised
as follows:

• Available research publications in this area demon-
strate that this paper is the first to apply a hybrid
technology, consisting of LSTM and SPC, to car-
bon emissions monitoring, using LSTM to model
the baseline behaviours of UK carbon emissions
(per capita) and SPC to detect assignable variations.

• This paper is also the first to discuss the control
chart obtained from applying computational and
statistical process techniques to C O2 emission data
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in line with known UK government carbon reduc-
tion commitments.

These contributions are vital to monitoring the effec-
tiveness of the government’s carbon reduction policies,
which are crucial in combating climate change. By
continuously evaluating the outcomes, we can iden-
tify effective strategies and pinpoint areas that need
improvement to ensure that the policies align with the
government’s climate objectives towards a sustainable
and low-carbon future.

Review of related literature

Several researchers have successfully applied artifi-
cial intelligence and machine learning to forecast car-
bon emissions, supporting the development of effective
environmental policies for reducing carbon emissions.
Acheampong and Boatang used ANN in training mod-
els for forecasting the intensity of carbon emissions in
Australia, Brazil, China, India, and the USA with mini-
mal error (Acheampong & Boateng, 2019). Their study
selected nine crucial parameters contributing to carbon
emissions intensity as input variables, including eco-
nomic growth, energy consumption, R&D, financial
development, foreign direct investment, trade open-
ness, industrialisation, and urbanisation. The ANN
models were validated and can be used by international
organisations and environmental policymakers to fore-
cast and make climate change policy decisions.

Agbulut proposed a framework relying on three
machine learning algorithms — deep learning, support
vector machine(SVM), and ANN — to forecast energy
consumption and CO2 emissions relating to Turkey’s
transportation sector (Ağbulut, 2022). The study used
gross domestic product per capita, population, vehicle
kilometres, and year as inputs. It concluded that policy-
makers need future energy investments to establish reg-
ulations, policies, norms, restrictions, legislations, and
initiatives to mitigate energy consumption and emis-
sions from the transportation sector.

Dozic and Urosevic (2019) examined an ANN
model of the EU’s energy system, which predicts CO2
emissions until 2050, considering the current Energy
Policy of the EU (Dozic & Urosevic, 2019). The study
concluded that the model is highly effective in predict-
ing the behaviour of CO2 emissions. It can facilitate
timely corrections to energy and economic strategies by

adjusting relevant indicators to meet the ambitious CO2
emission reduction targets set by the Energy Roadmap
2050 document of the European Commission. Their
research analysed several ANN structures to identify
the most effective model for large energy systems.

Huang (2021) contributed to China’s national pol-
icy plan for achieving a carbon peak in the mid-to-
long term, focusing on the Yangtze River Economic
Belt basin (Huang et al., 2021). The author’s goal was
to comprehensively promote energy conservation and
reduce emissions using a hybrid model of LSTM and
support vector regression (SVR) to manage and fore-
cast carbon emissions. The model in their research
uses information indicators such as industry invest-
ment, labour efficiency output, and carbon emission
intensity to predict carbon emissions accurately. Other
researchers have employed schemes based on SPC to
monitor and recommend reducing carbon emissions.

Shamsuzzaman et al. (2021) developed a technique
for monitoring carbon emissions from the industrial
sector using SPC (Shamsuzzaman et al., 2021). The
authors introduced an economic-statistical design for
the combined Shewhart X̄ and exponentially weighted
moving average (EWMA) scheme, which can help to
monitor carbon emissions for prompt action to control
excessive emissions. The proposed Statistical Process
Monitoring (SPM) scheme parameters have been opti-
mised to minimise the total cost, including carbon emis-
sions and operational costs. Actual data from differ-
ent industrial facilities have been used to demonstrate
the application of the proposed SPM scheme and its
effectiveness in reducing costs associated with exces-
sive carbon emissions from industries.

Although the above papers demonstrate excellent
applications of AI or SPC in carbon emission monitor-
ing or control, their results suffer limitations associated
with these techniques. For example, while ANNs can
learn complex non-linear patterns and relationships in
time series data, unlike SPC, they cannot effectively
monitor and control a process to ensure it operates
within specified limits. ANNs are better suited for pre-
dictive modelling and forecasting, while SPC is bet-
ter for monitoring and control. This paper proposes a
hybrid technique consisting of LSTM and SPC. LSTM
can be used to model carbon emission characteristics
from historical carbon emission data. At the same time,
SPC can identify whether this process entails a natural
or a caused variation.
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Methodology

Data description

The data used for this research is the UK annual CO2
emission (per capita) data, covering between 1750 and
2021 (Ritchie et al., 2020). Figure 2a presents the raw
data. The records are based on production or territo-
rial emissions from burning fossil fuels or cement pro-
duction within the UK’s borders and do not include
emissions from traded goods. Moreover, the numbers
are specific to CO2 emissions, not total greenhouse gas
emissions. Table 1 presents the descriptive statistics of
the dataset. As can be seen, the data is continuous, neg-
atively skewed, and platykurtic.

The workflow

Figure 1 presents the workflow involving the tech-
niques developed for this research.

Data pre-processing

This phase involves outlier removal, filtering, and nor-
malisation. This paper applies isolation forest (Liu et
al., 2008) for outlier detection and removal. Isolation
forest can detect outliers by scoring how easy it is to
isolate a single data point from the rest of the data points
using a binary search tree. The higher the number of
splits required to isolate a data point, the less likely the
data point is identified as an outlier.

Filtering, specifically moving averages, follows the
outlier removal process to further remove noise from
the data and to replace missing values with the mean
of their five nearest neighbours. This step is relevant

Table 1 Descriptive statistics

Statistic Value

Count 227.000000

Mean 7.471925

Standard deviation 3.213397

Minimum 1.006713

Kurtosis −1.139382

Skewness −0.626540

Median 8.912930

Maximum 11.818837

in filtering out false signals, which can obscure the
underlying trend in the data and consequently affect the
computation of the control limits. The data undergoes
z-score normalisation, scaling it down to the interval
[0,1] to ensure that the models have consistent scale
and distribution, contributing to the efficiency of the
learning algorithm.

Model development

The initial phase of the study involves evaluating the
predictive accuracy of four distinct models on the UK
annual CO2 emissions: LSTM, ARIMA, Exponential
Smoothing, and Feedforward ANN. The accuracy of
the surrogate model is essential for minimising the
potential interference of the model inaccuracy with the
CO2 emissions monitoring process. The dataset is par-
titioned into 80% training and 20% testing subsets for
the analysis. The training data encompasses annual car-
bon emissions per capita between 1803 and 1976, while
the test data spans from 1977 to 2021.

Among these models, LSTM, ANN, and ARIMA
leverage data from the previous three years to pre-
dict CO2 emissions for each year, whereas Exponential
Smoothing relies on immediate past values for predic-
tion. As a first step towards developing a framework
for accurately identifying variations in CO2 emissions
within the UK, the goal of the model development pro-
cess is to effectively represent the typical pattern in the
UK’s annual carbon emission data. By utilising SPC,
this model can then be used to detect out-of-control
situations.

To achieve this aim, the predicted value is subse-
quently compared with the actual value for the corre-
sponding timestamp, allowing for monitoring changes
in CO2 emissions. For example, when predicting the
CO2 emissions for 1977, the actual emissions data
from 1974 to 1976 is used as input. The disparity
between the predicted and actual values is calculated
and can be leveraged to monitor fluctuations in CO2
emissions, and this process continues throughout. This
approach aligns with the research goal, which is not
long-term forecasting of UK CO2 emissions but track-
ing assignable variations within the emission data.

Hyperparameters for the LSTM, ARIMA, Exponen-
tial Smoothing, and ANN were selected using Bayesian
Optimisation (Frazier, 2018) available in hyperopt
library (Bergstra et al., 2013). Table 2 presents the
hyperparameters for models.
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Fig. 1 Research workflow

Monitoring the carbon emissions process

The actual monitoring of the carbon emissions process
follows the successful model development. Using the
data from 1977 to 2021, set aside for model testing
and process monitoring, the surrogate model predicts
each year’s carbon emission per capita. The absolute
deviation of the measured emission from the predicted
emission for the year k is calculated as follows: δk =
|predictedk − measuredk |

Although SPC approaches have been developed for
non-normal data, researchers have demonstrated that
serious errors can occur in results from non-normal
data (Andrássyová et al., 2012; Chou et al., 1998; Xiao
et al., 2020). To avoid poor results due to non-normal
data, the Shapiro-Wilk test of normality is first used
to identify if the deviations are normally distributed
or not (Shapiro & Wilk, 1965). The null hypothesis of
the Shapiro-Wilk test is that the sample comes from
a normally distributed population. The test statistic is
calculated as follows:

W = (
∑n

i=1 aiδ(i))
2

∑n
i=1(δi − δ̄)2

(1)

where n is the sample size, δ(i) is the i − th order
statistic (i.e., the i th smallest value in the sample), x̄ is
the sample mean, and ai are constants that depend on
n and the chosen level of significance. The constants
are chosen so that the expected value of W is approx-
imately equal to 1 for normal data. The Shapiro-Wilk
test compares the value of W to critical values obtained
from a Shapiro-Wilk critical values table. If the calcu-
lated value of W is less than the critical value, then the
null hypothesis is not rejected, and the sample is con-
sidered consistent with normality; otherwise, the null
hypothesis is rejected, and the sample is considered to
be non-normal.

To avoid challenges posed by non-normal data, the
deviations undergo Box-Cox transformation (Box &
Cox, 1964) before the SPC process if they are non-
normally distributed. The Box-Cox equation is given by

y(λ) =
{

yλ−1
λ

if λ �= 0

ln(y) if λ = 0
(2)

y(λ) is the transformed variable; y represents the origi-
nal variable; and λ is the transformation parameter. The
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Table 2 Hyperparameters

Model Hyperparameter Value

LSTM LSTM_1 units 128

Activation_1 Relu

LSTM_2 units 64

Activation_2 Relu

Dropout 0.2

Optimizer Adam

Learning rate 0.00001

Loss function Mean squared error

Epochs 250000

Batch size 8

Validation split 0.2

ARIMA Autoregressive order
(p)

3

Differencing order
(d)

4

Moving Average
order (q)

9

Exponential Damping factor 0.875

Smoothing

ANN Learning rate 0.2071

Number of hidden
neurons

4

Momentum term 0.0797

Maximum iteration 830

Activation Relu

value of λ can be any real number but is often bounded
within a range of values depending on the context and
the nature of the data. For example, λ must be positive
if y is strictly positive. λ is selected to maximize the
log-likelihood function to find the best transformation
for the data.

Next, SPC can help to investigate regions along a
time series to determine if natural or special variations
drive them. Natural variations are inherent to a pro-
cess and are caused by random factors, while special
variations are non-random and driven by specific fac-
tors, such as a government’s carbon reduction policy,
as in the case of this research. To investigate the devi-
ations between the recorded carbon emissions and the
value predicted using the surrogate model and to iden-
tify the nature of the cause of the deviation for each
specific period, we have employed SPC. Specifically,
the Shewart control chart (the individual/moving-range

(I-MR) chart) has been used to evaluate the devia-
tions over time. I-MR-chart combines the moving range
(MR) and the individual control charts in determin-
ing the out-of-control situations within a process. Each
chart is based on two control limits, the Upper Con-
trol Limit (UCL) and Lower Control Limit (LCL), to
assess the variations within the data. The control limits
establish the chart’s sensitivity to variations within the
data points. MR of the deviation distribution, {δi }m

i=1, is
estimated as the absolute difference between the i − th
deviation and its predecessor, the (i − 1)th.

The process of computing the control limits for MR
is as follows:

• The difference between a data point δi and its pre-
decessor δi−1 is given by

M R = |δi − δi−1| (3)

• The centre line is computed as the arithmetic mean
of the values obtained from step 1 above as follows:

M R =
∑m−1

i=1 M Ri

m − 1
(4)

• Calculate control limits

UC L = D4 ∗ M R (5)

LC L = D3 ∗ M R (6)

• Using these values, plot the control chart and pro-
vide interpretations.

For the individual chart, the control limits are com-
puted as follows:

• Centre line

x =
∑m

i=1 δi

m
(7)

• Control limits

UC L = x + 3
M R

d2
(8)

LC L = x − 3
M R

d2
(9)

where d2, D3, and D4 are anti-biasing constants, with
values as 1.128, 0, and 3.267, respectively, being the
recommended factors for sample size, n = 2 (Mont-
gomery, 2020).
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Results and discussions

Data cleaning and transformation

Figure 2a and b demonstrate the improvements achieved
in the data after passing it through the pre-processing
pipeline. The data points before 1800 were considered
outliers and were deleted from the dataset. As well as
smoothing out and removing noise from the dataset, the
moving average is also used to replace missing values.
The data is then normalised to the scale [0,1] to ensure
that the models have consistent scale and distribution.

Evaluation of the surrogate model

Figure 3 presents the performance of the models on
the data. The first part of the figure showcases how
well the models perform on the training subset, while
the second part depicts their ability to predict the next
CO2 emissions using values from the past three years.
Metrics such as mean square error (MSE), root mean
square error (RMSE), mean absolute error (MAE), and
R-squared are used to evaluate the models and are sum-
marised in Table 3. The results show that the LSTM out-
performs the other models while the ARIMA performs
the worst. Due to its superior performance, the LSTM is
selected as the surrogate model for representing the UK
carbon emissions during the process monitoring phase.
The accuracy of the surrogate model is paramount in
reducing the potential interference of model inaccuracy
with the CO2 emissions monitoring process.

Process monitoring using SPC

The absolute difference (or deviation) between the
actual UK annual carbon emissions (per capita) and the
predicted emissions is first calculated across the time
series for the monitoring process. The Shapiro-Wilk
normality test demonstrates that the data significantly
deviates from a normal distribution with p-value (=
7.997 × 10−13) < 0.05. Applying the Box-Cox trans-
formation to the deviation data significantly produced a
normally distributed output, with the significance value
of the Shapiro-Wilk test, p-value(= 0.596 > 0.05).
Figure 4 demonstrates the data distributions before and
after applying the Box-Cox transformation.

Figure 5 presents I-MR control charts obtained from
the absolute difference between the model predictions
and the recorded UK carbon emissions. Following Nel-
son’s rules for control chart interpretations (Nelson,
1984, 1985), the data points presented in red have been
identified as “out-of-control” situations (or assignable
causes or special cause variations). Unlike the com-
mon cause variations (i.e., data points in blue), which
are the natural variations within a system, assignable
causes are unexpected. They are often due to exter-
nal reasons. SPC aims to eliminate assignable vari-
ations in several processes, including manufacturing,
production, asset management, and service delivery,
because they imply a deviation from predictable or
known behaviours. However, for a process that seeks to
introduce a departure from existing practice, assignable
causes could be desirable because they can represent

Fig. 2 UK annual CO2 emission (per capita) data
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Fig. 3 Models’ performance

the effect of the actions introduced to cause the change.
An example of the situation above where assignable
causes can portray a positive change is the effect of a
government’s carbon reduction plan on carbon emis-
sions, which is the thesis of this paper. Below are the
descriptions of Nelson’s eight rules and their general
practical insights:

• Rule 1: One point is over three standard deviations
from the mean — an unusual event or a measure-
ment error.

• Rule 2: Nine (or more) points in a row are on the
same side of the mean — a slight shift from the
average.

• Rule 3: Six (or more) points in a row continually
increase (or decrease) — a trend pattern.

Table 3 Performance scores of the model

Metric LSTM ARIMA Exponential
smoothing

ANN

MSE 0.00044 0.2643 0.0249 0.0737

RMSE 0.020 0.211 0.158 0.272

MAE 0.016 0.403 0.125 0.190

R2 0.997 0.971 0.997 0.993

• Rule 4: Fourteen (or more) points alternate in direc-
tion, increasing then decreasing — an over-control
pattern.

• Rule 5: Two (or more) out of three points in a row
are more than two standard deviations from the
mean in the same direction — a significant shift
from the average.

• Rule 6: Four (or more) out of five points in a row are
more than one standard deviation from the mean in
the same direction — a slight shift from the average.

• Rule 7: Fifteen points in a row are all within one
standard deviation of the mean on either side of the
mean — stratification nature of the process.

• Rule 8: Eight points in a row exist, but none within
one standard deviation of the mean, and the points
are in both directions from the mean — a mixture
property of the process.

The numbers on the red data points in Fig. 5 indi-
cate the rules used to confirm the points as out-of-
control. In the individual (I) and the moving range
(MR) charts, only rules 1, 2, 5 and 6 have been vio-
lated. Combining I-chart and MR-chart provides a
clear picture of the process behaviours using these
rules. I-charts can identify any common or assignable
causes within a process by monitoring the mean and
shifts in the process. In contrast, MR charts monitor
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Fig. 4 Box-Cox transformation of the deviation data

the process variations by tracking the absolute differ-
ence between known and measured behaviours of the
system. Out-of-control situations due to the violation

of rule 1 have been highlighted on the I-chart (in
1982,1983,1995,2006,2008, and 2017–2021) and the
MR-chart (in 1984 and 2009). Violation of rule 1 can

Fig. 5 I-MR Charts of the absolute deviation between the actual and predicted carbon emissions values
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be interpreted as the occurrence of an unusual event or
an erroneous measurement of data. Deviations from the
then-existing pattern in the UK carbon emissions (per
capita) have been recorded between 1997–2004 and
2012–2016 and 2000, as highlighted by the data points
numbered 2, 5, and 6 in the I-chart, illustrating vio-
lations of the corresponding rules. The control charts
reveal that activities that impacted the UK’s carbon
emissions per capita intensified from the mid-1990s
to 2021.

In line with the observations from the control charts,
according to a technical report from the European Envi-
ronment Agency, between 1990 and 2012, greenhouse
gas emissions in the EU decreased, with Germany and
the UK accounting for 50% of the EU’s net decrease
in emissions within this period (Agency & Agency,
2015). The UK’s main contributor was the liberalisa-
tion of energy markets and the subsequent switch from
oil and coal to gas as a fuel for electricity production
(Agency & Agency, 2015).

Moreover, the intensification of the UK’s commit-
ments towards carbon reduction from the 1990s follows
its choice of 1990 as a baseline year for carbon emis-
sions reductions. This baseline commitment choice
was primarily due to the United Nations Framework
Convention on Climate Change (UNFCCC), estab-
lished in 1992 but became effective in 1994 (Bodan-
sky, 1993; Greene, 2000). The convention aimed to sta-
bilise greenhouse gas concentrations in the atmosphere
at a level that would prevent dangerous anthropogenic
interference with the climate system. The developed
nations agreed to execute national strategies for tack-
ling climate change to lower anthropogenic greenhouse
gas emissions to levels observed in a baseline year.

By setting the baseline year at 1990, the UK com-
mitted to reducing its emissions to levels below that
year’s emissions (Barrett et al., 2018; Kelly et al., 2014)
through several schemes, including the Paris Agree-
ment and the Kyoto Protocol, involving the first and
second commitments, covering the periods 2008–2012
and 2013–2020 respectively. Since then, the UK has set
several emissions reduction targets, including achiev-
ing net zero emissions by 2050 (Pye et al., 2017). Using
1990 as a baseline year, the UK can track its progress
towards these targets and monitor its success in reduc-
ing its contribution to global greenhouse gas emissions.

We suspect the natural variation recorded between
2009 and 2013 is part of the response to the measures
preceding this period, including the first Kyoto Proto-

col commitment, which could normalise as part of the
baseline. However, the Second Kyoto Protocol commit-
ment and several other efforts introduced a shift from
the baseline in 2013, leading to caused variation, as
seen on the control chart.

Correlating the UK government’s known carbon reduc-
tion/energy policies and emissions-related events with
the out-of-control periods

The control chart’s out-of-control periods (i.e., the
shaded region) show correlations with the most signif-
icant UK carbon reduction and energy efficiency com-
mitments and plans and events relating to carbon emis-
sions over the years. To demonstrate that the approach
in this paper can identify where carbon-related policies
and events within the UK may impact its usual carbon
emission process, we have identified carbon-related
policies and events recorded within the shaded peri-
ods. Significant carbon reduction policies and events
in the UK that correlate with the shaded regions in the
control chart have been presented as follows:

1982–1984

a While no carbon reduction policy or legislation was
directly established by the UK government within
this period, an earlier policy, such as the UK Energy
Conservation Act 1981 (Legislation.gov.uk, 1981),
could have affected the CO2 emissions within this
period. The Act required energy audits and effi-
ciency measures for public sector buildings and
large companies. Its goal was to reduce energy
consumption, improve energy efficiency, and pro-
mote sustainable development in the UK. Data pub-
lished by the UK National Infrastructure Commis-
sion shows that total inland coal consumption in the
UK decreased from 1981 to 1982 by 6.25%.1

b A major event within this period, which could
impact UK carbon emissions, was the UK miners’
strike (from March 84 to March 85) (Adeney &
Lloyd, 2021), which led to the closure of many coal
mines in the UK. This closure could decrease car-
bon emissions around this period since coal signifi-
cantly contributes to carbon emissions. Mamurekli
demonstrated that as well as the reduction in the

1 https://nic.org.uk/app/uploads/Historical-Energy-Data-Final-
Dataset.xlsx
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UK’s coal supply between 1984 and 1985, the UK’s
coal consumption reduced from 34.6% of the total
energy consumption in 1978 to 25% in 1984–85
(Mamurekli, 2010).

1995–2009

a The liberalisation of the energy market in the UK
began in the late 1990s (Stanford, 1998) and paved
the way for competition in the generation and sup-
ply of electricity. The subsequent “dash for gas” in
the 1990s saw a significant increase in the use of
natural gas for power generation (Spooner, 1995).
This refers to a transition among newly privatised
electricity companies in the UK towards gener-
ating electricity using natural gas. The “dash for
gas” caused a decrease in gas prices, a substantial
increase in gas-fired power generation capacity, sig-
nificant improvements in the average efficiency of
gas-fired power plants, and a corresponding rise in
total gas-fired electricity generation from 4 TWh
in 1990 to 140 TWh in 2003 (Graus et al., 2007).
Richardson and Chanwai confirm that the “dash for
gas” contributed to reducing the UK’s carbon emis-
sions within this period (Richardson & Chanwai,
2003).

b The UK government levies a fee on the energy used
by industry, farms, and the governmental sector.
This fee is known as the Climate Change Levy
(CCL) (Pearce, 2006). The programme was first
implemented in 2001 to promote energy efficiency
and lower greenhouse gas pollution, with plans to
cut annual emissions significantly by 2010. Since
then, it has incentivised businesses to reduce energy
consumption, increase the use of renewable energy,
and generate government revenue, but it has also
increased costs for businesses. Data is needed to
conclude how much this scheme contributed to the
variability in the UK’s carbon emissions at the out-
set before it became part of the baseline.

c In 2005, the European Union created the EU Emis-
sions Trading System (EU ETS) as a cap-and-
trade programme to lower greenhouse gas emis-
sions from industrial areas (Action, 2013). It lim-
its the overall quantity of emissions that industries
can release and covers all EU members, includ-
ing the UK before it leaves the EU. Companies
included in the programme are given permits to
cover their emissions. They can purchase or trade

these allowances on the market to generate revenue,
providing an incentive to cut emissions. Similar to
the situation with the CCL, data is needed to con-
clude how much this scheme contributed to the vari-
ability in the UK’s carbon emissions at the outset
before it became part of the baseline.

d Energy Performance Certificates (EPCs) were intro-
duced in the UK in 2007 (Watts et al., 2011), a sig-
nificant move towards increasing building energy
efficiency and lowering carbon pollution. EPCs
offer details on a building’s energy efficiency and
suggestions for development, assisting in spread-
ing knowledge about energy efficiency and encour-
aging homeowners and sellers to invest in energy-
saving technologies.

e Following the Climate Change Act of 2008, the UK
government ratified the Kyoto Protocol and com-
mitted to reducing greenhouse gas pollution signif-
icantly by 2050 (Skiba et al., 2012). In response,
the UK has taken measures to support the use of
renewable energy, improve the energy economy,
and promote low-carbon transit to meet this goal.
For example, the UK has established legally bind-
ing carbon budgets, passed the Climate Change Act,
and committed to providing international climate
finance to support developing countries’ climate
action. These were targeted at reducing UK’s green-
house gas emissions by 12.5% below 1990 levels
by 2008–2012, a target it had exceeded in 2014
(of Energy & Change, 2015).

f A carbon budget, or cap on the amount of green-
house emissions the UK can release over five years,
was established by the Carbon Budgets Order 2009
(UK Government, 2023a) as a piece of UK law.
The UK government adopted policies and steps to
decrease emissions and provide regular updates on
its progress towards achieving these goals.

2013–2021

a To promote energy efficiency and lower green-
house gas pollution, the UK passed the Energy Act
2013 into legislation (UK Government, 2023b). It
consists of several measures, including the Car-
bon Price Floor, Electricity Market Reform, Green
Deal, Minimum Energy Efficiency Standards, and
Renewable Heat Incentives. These regulations seek
to advance the use of low-carbon technologies, fos-
ter the growth of green energy sources, and improve
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the energy economy of residential and commercial
buildings.

b The Carbon Reduction Commitment(CRC) Energy
Efficiency Scheme was a mandatory UK gov-
ernment initiative introduced in 2010 to improve
energy efficiency and reduce carbon emissions
(Committee on Climate Change, 2010; UK Depart-
ment of Energy and Climate Change, 2010). How-
ever, the CRC Energy Efficiency Scheme was
criticised for its complexity, which made com-
pliance challenging and expensive. The scheme
was reformed in 2013 to simplify the process,
focus on energy efficiency and introduce a perfor-
mance league table to encourage transparency and
improvements. It was later replaced by the Stream-
lined Energy and Carbon Reporting (SECR) frame-
work in 2019 (UK Government, 2021b).

c The UK government launched the Clean Growth
Strategy in 2017 to promote economic growth while
reducing greenhouse gas emissions and address-
ing climate change (Ward & Matikainen, 2018).
The strategy outlines various measures to achieve
this, including improving energy efficiency in
homes and businesses, encouraging the use of low-
emission vehicles and investing in infrastructure,
supporting the development of low-carbon indus-
tries, investing in research and development for new
low-carbon technologies, and incentivising busi-
nesses to reduce their carbon footprint.

d The UK government and the offshore wind indus-
try launched the offshore wind sector deal in 2019
to significantly increase offshore wind power gen-
eration (BEIS, 2019). Its goal is to increase the
UK’s offshore wind capacity by 2030 and expand
the number of jobs in the sector while contribut-
ing to efforts to combat climate change and reduce
greenhouse gas emissions. The deal includes strate-
gies such as investment in new offshore wind farms,
improvements to supply chains and infrastructure,
and support for innovation and research and devel-
opment.

e The UK government committed in 2019 to achieve
net zero carbon emissions by 2050, aiming to limit
global warming to 1.5◦C above pre-industrial levels
and prevent the worst impacts of climate change
(UK Government, 2021a). This target is enshrined
in law, making the UK the first major economy in
the world to commit to net zero carbon emissions
by 2050. Strategies include increasing renewable

energy generation, phasing out petrol and diesel
cars, improving energy efficiency in buildings, and
investing in new technologies.

f The COVID-19 pandemic significantly impacted
worldwide carbon emissions (Mehlig et al., 2021).
With lockdowns and travel restrictions, energy
demand was significantly decreased, particularly
from transportation and industry. As a result, car-
bon emissions in the UK fell to their lowest levels
in decades, with a 13% reduction compared to the
previous year.

g The UK government introduced the Sixth Carbon
Budget in December 2020, aiming to achieve the
country’s net zero emissions objective by 2050
by lowering greenhouse gas emissions by 78% by
2035 compared to 1990 (UK Government, 2021c).
The plan outlines sector-specific emissions reduc-
tion goals and methods for achieving them, includ-
ing growing renewable energy sources, enhancing
the energy economy, and utilising fewer fossil fuels
for transportation. The UK government accepted
the Committee on Climate Change’s proposals and
plans to propose legislation to formalise the goals.

Conclusions and recommendations

This research demonstrates the application of a hybrid
technology comprising deep learning and statistical
process control in monitoring the impact of the gov-
ernment’s carbon reduction policy on carbon emissions
within the UK economy. We first developed the surro-
gate model of the carbon emissions process of the UK
and computed the deviation of out-of-sample measured
data from the model. I-MR was employed to identify
regions of special cause variations, which we demon-
strated to correlate with significant carbon reduction
policies of the UK government and known events, such
as COVID-19, that can impact UK carbon emissions.
However, there are still aspects of this work that war-
rant future research. For example, it can be challeng-
ing to identify each policy’s or event’s contributions to
an out-of-control region. Also, we cannot demonstrate
whether the responses on the control charts emanated
from the long-term or short-term effects of policies.
Solving these problems will make it possible to investi-
gate the impact of individual policies and how long they
take to reflect on the process. In our future related work,
we aim to explore explainable AI applications on this
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task, leveraging explicit dummies to understand better
the influence of policies of interest on carbon emis-
sions data. This paper considers the government’s car-
bon reduction policies and events such as COVID-19;
however, several other events can impact carbon emis-
sions. These activities include economic development,
technology, agriculture, and imports. Investigating the
impact of changes in the actions within these activities
will be a valuable further contribution to knowledge.
Although our method cannot recommend future cli-
mate policies, when used in combination with a qualita-
tive approach it can be helpful in identifying the impact
of existing policies and determining which ones to rein-
force for more effective CO2 emissions control.
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A B S T R A C T

In this viewpoint article, our goal is to raise awareness and spark debate in the Information 
Systems (IS) community regarding a prominent concern that has important strategic and ethical 
implications: the environmental impact of the increasing use of generative artificial intelligence 
(GAI). We examine several specific issues, beginning with GAI’s heavy consumption of natural 
resources and electricity. We then move to assessing how the rich and the Global North gain via 
GAI, while the poor and the Global South must deal with its adverse effects. We then move to 
assessing GAI’s impact on underrepresented communities and countries in the Global South; 
while GAI contributes to global warming, this affects people unevenly, because it is mostly rich 
people and the Global North that make intensive use of these technologies. After suggesting that 
more local and global laws are needed to regulate the sustainable use of AI, we report on how 
organizations can perform AI strategizing, for instance to control emissions in smart cities and 
improve weather forecasting. We conclude with a research agenda that aims to encourage IS 
scholars to focus on the environmental impact of AI, its ethical implications for organizations, and 
how GAI can be used strategically to benefit all.

Introduction

Artificial intelligence (AI) has been around for several decades. However, only since the 2010s have we witnessed AI’s widespread 
diffusion, in large part due to the big data revolution (McAfee and Brynjolfsson 2012) and the increased capabilities of contemporary 
computers. AI, and its most recent development generative AI (GAI), has the potential to benefit a cornucopia of activities such as 
automation (decision-making processes, robotics industry), online content creation and moderation, customer-facing processes 
(chatbots), and e-commerce website management (and nudging). With these strategic opportunities, ethical challenges surface 
(Marabelli and Davison 2025). For instance, biased systems (e.g., hiring/firing systems, AI supporting juridical systems) can lead to 
discrimination and privacy concerns, such as how GAI employs user prompts (among other data sources) to train its algorithms.

While these AI issues are well-known and broadly discussed by IS scholars, AI’s impacts on the environment are significantly 
understudied. Focusing on AI’s impacts on the environment is, however, important because AI is “resource hungry1” and contributes to 
greenhouse gas emissions. For instance, the data centers powering AI already account for up to 2 % of global energy demand, a figure 
that is close to what is currently consumed by the airline industry. The continuous rise in AI use will cause this figure to surpass 20 % of 

* Corresponding author.
E-mail addresses: marco@bentley.edu (M. Marabelli), isrobert@cityu.edu.hk (R.M. Davison). 

1 https://www.nytimes.com/2024/07/11/climate/artificial-intelligence-energy-usage.html.
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the global energy demand by 2030, according to a recent MIT report (Stackpole 2025). The reason for this vast consumption of power 
relates to the fact that new AI models, notably GAI, require constant training (even when the systems are “in production”) and thus a 
considerable amount of processing power. In addition, rigorous measures of GAI’s impact on the environment are still unavailable 
(Luccioni and Hernandez-Garcia, 2023). This represents an important departure from more traditional AI systems, for instance those 
used to automate routine processes such as inventory management, which require less in the way of “constant” training. Given the 
current pace of global warming due to the increased emission of greenhouse gases and given that global warming impacts are not 
distributed evenly across communities worldwide, we need to ask and obtain answers to the following questions: 

• What is the actual impact of GAI on the environment?
• Why is GAI so resource demanding?
• What can we do to mitigate GAI’s negative impacts on the environment, especially when climate changes affect communities unevenly?
• What are the strategic opportunities for organizations and government concerning the use of GAI to mitigate global warming and address 

climate changes issues?

The goal of this viewpoint article is to discuss the above questions and create awareness in the IS (information systems) community 
regarding the ethical challenges and strategic opportunities associated with GAI that concern the environment. A discussion around 
technologies and the environment constitutes a sociotechnical topic that will, we believe, appeal to IS scholars, and is something that 
JSIS has historically supported, for instance with respect to sustainable IT and green IS (cf. Bengtsson and Ågerfalk 2011; Butler 2011; 
Dao et al., 2011; Petrini and Pozzebon 2009). GAI, like most technologies, has a bright and a dark side (Bohnsack et al., 2022). For 
instance, and related to the environment, the recent push to adopt electric vehicles to reduce the short-term release of greenhouse gases 
poses long term challenges associated with the disposal of batteries. Similarly, the widespread deployment of GAI focusing on auto
mating routine tasks poses environmental concerns stemming from these systems’ demand to be constantly trained with large datasets. 
This training indirectly requires considerable amounts of natural resources (primarily water) and electricity. In sum, GAI training leads 
to the release of greenhouse gases, and the use of huge quantities of water. Meanwhile, global warming is a direct consequence of 
greenhouse gas emissions.

Global warming contributes to such extreme climate events as storms/hurricanes/cyclones, droughts, wildfires and floods. What is 
more, global warming unevenly affects communities worldwide. For instance, in rural, hot, less-developed areas, heat waves 
disproportionately affect the poor who need to work either outdoors (agriculture, construction) or in factories and mills without air 
conditioning systems and who cannot afford cooling systems in their own homes. However, GAI is mostly produced and consumed in 
urban, rich areas where residents are more likely to have air conditioning systems both at home and in the workplace. Thus, while 
global warming affects everyone, AI producers and consumers (where AI-related pollution originates) suffer fewer consequences 
associated with global warming than those who are not (and might never be) AI producers or consumers. Consequently, the uncon
trolled use of GAI by organizations has the potential to generate social injustices, specifically penalizing marginalized populations and 
poor countries.

It is however important to note that, in the last few years, GAI was used, strategically, to mitigate the release of greenhouse gases 
and respond to our fast-changing climate. For instance, organizations and government institutions have started to design systems 
supporting smart cities (e.g., to reduce traffic, and therefore pollution), aiding agricultural systems (e.g., to optimize harvesting 
techniques), and improving weather forecasting (Fang et al., 2023; Musa 2016). Nuclear power, a source of energy that involves the 
release of minimal amounts of greenhouse gases, is used to generate electricity in limited amounts. For instance, in 2024 nuclear power 
provided roughly only 9 % of the world’s electricity from 440 power reactors.2 But GAI’s widespread diffusion and the demand to 
power these systems with green sources of energy might boost the development of nuclear plants worldwide. For instance, Google is 
leading important initiatives related to nuclear power and partnering with Kairos Power aimed at “accelerat[ing] a new technology to 
meet energy needs cleanly and reliably, and unlock the full potential of AI for everyone.”3 Clearly, regulations at the local and global 
level will play an important role enabling (or constraining) GAI-based innovations, together with disciplining organizations’ behaviors 
with respect to the (mis)use of these technologies with respect to environmental impacts.

In sum, technologies can serve the goal of addressing grand challenges such as global warming (Nambisan and George 2024) and 
implementing the application of cutting edge innovations to environmental sustainability (George et al., 2021). However, in our 
opinion, current IS research has focused mostly on the apparently positive impacts of technologies on the environment. In this 
viewpoint article, we aim to lay out our concerns regarding the increased use of GAI, while acknowledging its potential to benefit the 
environment (or at least to not generate more harm). Fig. 1 below portrays a roadmap of our viewpoint of AI and the environment, 
which reflects how the rest of the paper unfolds.

Next, following our roadmap, we provide an overview of GAI’s impact on the environment and explain why GAI needs so much 
more natural resources and electricity than traditional information systems. We then move to the ethical challenges and focus on the AI 
value chain (all actors involved from design to use) because AI systems require significant resources throughout their lifecycle. To this 
end, an important issue we discuss concerns the lack of rigorous and transparent ways to assess AI’s potentially negative effects on the 
environment. We further provide examples of how AI might create social injustice due to its unequal effects on the environment and 
reflect on what institutions could do to regulate the industry.

2 https://world-nuclear.org/information-library/current-and-future-generation/nuclear-power-in-the-world-today.
3 https://blog.google/outreach-initiatives/sustainability/google-kairos-power-nuclear-energy-agreement/.
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Finally, we move to the potential benefits of AI, which include the creation of smart cities (to reduce traffic, and therefore 
greenhouse gas emissions), smart agriculture, weather forecasting systems and so on. The outcome of our roadmap consists of re
flections on the strategic use of AI to address climate changes and advice for IS scholars on potential avenues of further research and 
theorizing around AI and the environment, with the goal to advance knowledge and insight on this important topic in our field and 
beyond – for instance computer science, management, and other scientific disciplines that study earth phenomena.

Overview of GAI’s Relationship with the Environment

GAI is a significant consumer of both natural resources, which may be in short supply, and electricity, which in many countries is 
prevalently generated in coal-fired power stations that also emit significant volumes of greenhouse gases (Li et al., 2023b). In fact, 
compared with “traditional” AI, GAI models require far higher volumes of natural resources and electricity, because their models need 
to be constantly trained, as in the case of cf. for instance large language models (LLMs) used by GAI such as ChatGPT.

Natural resources primarily refer to water to cool down the systems that run the intense processing activities that training GAI 
models requires. Electricity powers and keeps AI systems up and running 24/7. The demand for these resources to train GAI models in 
data centers is destined to increase exponentially over time.4 What is more, GAI applications need to be trained for their entire lifecycle 
(Chandhiramowuli et al., 2023). For these reasons, organizations that use GAI intensively face challenges with meeting so-called net- 
zero emissions, a goal for businesses such as Google,5 one of the most prominent AI organizations. Net-zero emissions means that the 
amount of emissions added to the environment should not exceed the amount taken away by the same organization or entity. 
Emissions refer to greenhouse gases released into the atmosphere, which trap heat and contribute to global warming, a trend we’ve 
witnessed for the past century at least.6 These gases include carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and fluorinated 
gases (all these gases are collectively referred to as greenhouse gases). Carbon footprints are measured in tons of greenhouse gas 
emissions, which are converted into carbon dioxide equivalent (CO2e), a standard unit for measuring carbon footprint. Pushing or
ganizations to achieve net-zero emissions has unfortunately also led to greenwashing,7 a phenomenon that we discuss later in this 
paper.

Fig. 1. AI and the environment: a roadmap.

4 https://www.goldmansachs.com/insights/articles/AI-poised-to-drive-160-increase-in-power-demand.
5 https://sustainability.google/operating-sustainably/net-zero-carbon/.
6 https://earthobservatory.nasa.gov/world-of-change/global-temperatures.
7 https://www.un.org/en/climatechange/science/climate-issues/greenwashing.
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GAI is resource hungry

GAI is resource hungry.8 Hugging Face, a US organization based in New York that develops AI applications in collaboration with 
researchers at Carnegie Mellon University, found that it takes as much electricity to fully charge a smartphone as it does to generate an 
image using GAI (Luccioni et al., 2023). Moreover, the use of these applications is widespread and available free of charge on online 
platforms, which means that individuals can access these systems at all times and “play” with GAI. These systems benefit from 
receiving countless prompts, all of which contribute to training. However, this crowd-based constant training increases the demand for 
natural resources and electricity.

GAI is resource hungry because in order to be trained it needs a vast amount of data, generally obtained by scraping the web and by 
analyzing users’ prompts. Resources also refers to the natural resources, such as rare earth metals (e.g., Gallium and Germanium) 
needed to fabricate chips, but also, more importantly, water, a scarce resource in many countries yet one that is essential to cool down 
high-speed computers. Some water can be reused, and some is discharged (in the environment), but a considerable amount 
evaporates.9

For instance, Spain is a country that, on average, experiences very high temperatures in the summer with only mild temperatures in 
winter, yet that has limited precipitation. In 2022, Spain struggled with drought to the point that local authorities recommended that 
residents should use water parsimoniously and not water their gardens. Along with a high risk of wildfires (Pausas and Keeley 2021), as 
a direct consequence of this drought the Castilla La Mancha region, which produces a quarter of all Spanish grain, was expected to lose 
up to 90 % of its 2023 harvest. Nevertheless, in 2023, Meta announced plans to build a US$1.1 billion data center in Talavera de la 
Reina, a city in central Spain, that would likely use around 176 million gallons of water/year for cooling.10 Similarly, Microsoft uses 
water in Arizona (US) (a state where the average daytime temperature in its summer nears 100 ◦F/38 ◦C) to cool down AI servers.11 Li 
et al. (2023a) suggest that global AI demand could cause data centers to consume 1.1 trillion to 1.7 trillion gallons of water by 2027.

Researchers at the University of California who studied water footprint related to AI, found that GPT-3, a LLM that OpenAI released 
in 2020, consumes roughly one liter of water to cool down a computer for every 40–100 responses. GPT-4 consumes even more (Li 
et al., 2023a). In 2022, Google and Microsoft combined, consumed 8.5 billion gallons of water, mostly in their data centers, which is 
equal to how much water 700,000 people in a rich country consume annually.12 Projections about future water use to cool down AI 
systems are not encouraging: by 2027, the global demand for water for AI could be half that of the UK’s annual consumption (Wu et al., 
2022).

It is debatable whether Western countries should promote investments by large organizations such as Meta at the expense of their 
own citizens’ water needs. But the fact that water is such a key resource makes it even more problematic for organizations to use these 
systems in the Global South, where even residential properties often lack running water. This creates an unfair situation: Global South 
countries, where water is often scarce, have less potential to create and use AI systems internally (let alone the possibility to become 
profitable venues to host data centers from Global North countries). For instance, and solely referring to Africa, the United Nations 
considers Chad, Comoros, Djibouti, Eritrea, Ethiopia, Liberia, Libya, Madagascar, Niger, Sierra Leone, Somalia, South Sudan, and 
Sudan as “water insecure” countries.13

Along with natural resources such as water, most AI systems need a considerable amount of electricity for everyday use/training. 
For instance, while a rack of web or mail servers generally runs on 7 kW of electricity, AI racks need up to 100 kW. The situation 
becomes more serious when it comes to GAI. For instance, it costs OpenAI more than 50 GW-hours of electricity to train GPT-4, more 
than 50 times more electricity than training its predecessor, GPT-3, required. In 2022, worldwide data centers, including Amazon’s 
cloud and Google’s search engine, used about 1 to 1.3 percent of the world’s electricity.14 However, GAI-based tasks such as creating 
an image from a prompt can be performed routinely, free of charge, on several onlinxe platforms that offer GAI. A 2023 report by the 
International Energy Agency projects that the growth of AI will cause energy consumption in data centers to double by 2026.15 Because 
of the lack of specific applications to measure AI’s negative impact on the environment, it is hard to make long-term predictions. 
Nevertheless, optimistic reports from the United Nations predict that by 2030 AI will be able to substantially support the environment 
by “optimiz[ing] grids and increase[ing] the efficiency of renewable sources.16

In summary, GAI’s resource-hungry nature calls for a reflection on how organizations currently use and will use AI systems. This 
poses three issues that involve ethical considerations. The first concerns time. Organizations train AI models not only during the design 
phase; these models, in ordet to provide timely answers and improve their response quality constantly need training. This means that 

8 https://www.nytimes.com/2023/10/10/climate/ai-could-soon-need-as-much-electricity-as-an-entire-country.html.
9 https://dgtlinfra.com/data-center-water-usage/.

10 https://www.bloomberg.com/news/articles/2023-07-26/extreme-heat-drought-drive-opposition-to-ai-data-centers.
11 https://www.theatlantic.com/technology/archive/2024/03/ai-water-climate-microsoft/677602.
12 https://www.economist.com/technology-quarterly/2024/01/29/data-centres-improved-greatly-in-energy-efficiency-as-they-grew-massively- 

larger.
13 Water security refers to “the capacity of a population to safeguard sustainable access to adequate quantities of acceptable quality water for 

sustaining livelihoods, human well-being, and socio-economic development, for ensuring protection against water-borne pollution and water- 
related disasters, and for preserving ecosystems in a climate of peace and political stability”.(https://www.unwater.org/publications/what- 
water-security-infographic).
14 https://www.iea.org/energy-system/buildings/data-centres-and-data-transmission-networks.
15 https://iea.blob.core.windows.net/assets/6b2fd954-2017-408e-bf08-952fdd62118a/Electricity2024-Analysisandforecastto2026.pdf.
16 https://news.un.org/en/story/2023/11/1143187.
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they demand resources in the long term, substantially affecting GAI’s value chain. The second concerns the extent to which it is possible 
to assess AI’s direct and indirect impact on the environment; we recognize that our ability to assess impact is currently limited. The third 
concerns social justice, and the uneven negative effects that AI has on the environment; AI’s contribution to global warming affects 
worldwide populations in different ways. We outline these three ethical concerns next.

GAI’s value chain and constant training

As we noted above, training AI models represents a major challenge for the environment because their computational capabilities 
require significant resources. But it is important to note that training is not a one-off process. Models are initially trained during/after 
the design phase to test their potential for deployment, the so-called “production” phase. Nevertheless, once an AI model operates in 
the real world, the value chain of AI needs constant tweaks that humans supervise during the whole AI lifecycle (Chandhiramowuli and 
Chaudhuri, 2023). Accordingly, the nature of AI models leads to two important ethical implications. First, the “automated” part of this 
constant training will intensely and continuously use precious resources (i.e., water and electricity). Second, organizations often 
outsource the “manual” part to contractors and gig workers in the Global South. These people, located in countries like India, Pakistan 
and Venezuela, are often egregiously exploited. For instance, minors are often recruited to perform microtasks to train AI systems for 
little pay over long shifts and in unhealthy work conditions.17 Thus, we can see that other ethical considerations involving exploited 
Global South workers compound AI’s ethical implications for the environment.

The fact that GAI systems need constant training has important ethical consequences affecting its value chain, which seems to 
generate value only for some actors in the chain (i.e., the high-tech organizations that produce and use these systems at the expense of 
contractors in their lifecycle and end users). A focus on end users here is important because AI systems also affect consumer spending 
via so-called online nudging practices, which e-commerce websites use to subtly persuade users to purchase what they don’t need 
(Mirbabaie et al., 2023). For instance, Amazon pushes customers to purchase several items, often located in different warehouses with 
options such as “same day” or “two-hour” delivery, which helps to support a gig economy that comprises workers who drive long hours 
day and night to deliver items.

The practices described above regarding the gig economy lead to unnecessary emissions and extra maintenance costs, e.g., from 
using private vehicles more often. In addition, ground transportation has its own issues, regardless of whether gig workers use their 
own vehicles or company-provided vehicles (cf. Amazon trucks); producing and using tires creates environmental hazards. The 
manufacture of tires requires both nonreusable components and electricity, while the use of tires releases tire wear particles from 
abrasion that become especially dangerous when entering aquatic environments (Tamis et al., 2021; Trudsø et al., 2022). Furthermore, 
this example of AI-powered nudging on websites, with side effects associated not just with ethical implications concerning nudging but 
also with ethical implications concerning more driving (including potential fuel consumption and the plastic materials used to package 
items), represents just one among many examples involving secondhand effects of AI. We suggest that studying the environmental 
implications of pervasive and invasive AI use should also account for indirect effects. We are aware that it is generally difficult to 
quantify a phenomenon’s indirect effects. In the case of AI and the environment, even direct effects that might turn into an ethical issue 
are difficult to quantify as we explain next.

AI assessments and ambiguities

While it is well known that AI systems require a considerable amount of resources, we lack rigorous ways to measure AI’s actual 
carbon footprints. This nontransparent aspect of GAI’s impact on the environment creates opportunities for organizations to pursue 
environmentally-unfriendly initiatives with poor vetting from institutions and the general public. Opportunistic behaviors associated 
with environmentally-unfriendly initiatives in general terms are particularly prone to occur within the global tech industry and ac
count for as much as 3.9 % of worldwide greenhouse gas emissions, with AI representing a significant fraction of that number. 
However, it is not clear how much AI and GAI specifically (notably the resources required to train models) contributes to the carbon 
footprint, and scholars have suggested creating a centralized repository to report and track AI-related emissions (Luccioni and 
Hernandez-Garcia, 2023). For instance, according to Luccioni et al. (2023), between 2017 and 2021, the volume of electricity that four 
organizations (Meta, Amazon, Microsoft, and Google) used doubled, and global data center electricity consumption has grown by up to 
40 % annually in recent years. It now accounts for almost 2 % of global electricity consumption and contributed 1 % of energy-related 
greenhouse gas emissions in 2022 (Stackpole 2025). However, to what extent AI specifically contributes to these figures remains 
unclear. It is nevertheless credible to suggest that AI’s contribution to greenhouse gas emissions will grow in the near future, because of 
the race to build powerful GAI systems (MIT News 2025).

Dodge et al. (2022) built a framework to measure the carbon footprint of AI applications that run in the cloud. They also noted that 
organizations that act strategically with respect to where they build data centers (i.e., their physical locations) can reduce AI’s carbon 
footprint. Picking strategic locations to build data centers involves building facilities in regions with a colder climate (e.g. in higher 
latitudes or altitudes). This can reduce how much water or electricity they use. Needless to say, systems trained in areas where energy 
production relies more heavily on fossil fuels are more prone to releasing more greenhouse gases (cf. also Kirkpatrick 2023).

While organizations such as Microsoft have attempted to release accurate information on greenhouse gas emissions, it is much more 

17 https://www.wired.com/story/artificial-intelligence-data-labeling-children/.
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difficult to obtain similar information with respect to the supply and value chains (Joppa et al., 2021). In addition, organizations 
developing AI models do not have specific incentives to share quantitative data on resources used to build and run such models. In fact, 
in many countries, no laws mandate organizations to report on their carbon footprint. This echoes longstanding problems associated 
with the same (high-tech) organizations not being willing to share internal research findings, e.g., on the potential issues associated 
with social media issues (addiction, etc.) and damages to adolescents. A good example from the near past is Instagram, where only 
thanks to a whistleblower was the public made aware of the platform’s negative effects on young people with eating disorders 
(Marabelli and Newell 2023).

Assuming that organizations will be required to share their AI carbon footprint (or will decide to do so for marketing purposes, i.e., 
to look good to the general public), they may anyway attempt to game the system through greenwashing practices, encouraged by the 
lack of objective and precise measurement of greenhouse gas emissions. For instance, a large study by the European Union (EU) 
concerning organizations across EU member countries18 found that, in 2022, 53 % of green claims published by organizations gave 
vague, misleading, or unfounded information while 40 % of claims had no supporting evidence. But even when organizations report 
precise data on their green claims, they can still purchase carbon offsets without changing their behavior. Carbon offsetting, according 
to earth.org, refers to “a process through which organizations or individuals compensate for their greenhouse gas emissions by 
investing in an equivalent removal of such emissions from the atmosphere. This offsetting occurs through projects like reforestation, 
renewable energy, methane combustion/collection, and energy conservation.19” Carbon offsetting gives organizations credits in the 
form of tokens that they use to account for net climate benefits from one entity to another; entities can trade these credits once a 
certified authority approves them.

Organizations keen on pursuing environmentally unfriendly or unsustainable AI-related projects might purchase credits by giving 
money to initiatives, e.g., to preserve forests in South America, while keeping up with intensive GAI training and with this achieving 
net-zero emissions, because the purchase of credits offsets the release of pollution generated by their computers. This practice is, in our 
opinion, both dangerous and disingenuous: it avoids the need to consider how to create long-term solutions for developing AI systems 
in a sustainable manner and, more importantly, does not address issues associated with the uneven distribution of negative conse
quences stemming from global warming, a topic that we discuss in the next section.

AI and social justice

AI’s impact on the environment is not evenly distributed across countries and populations. A 2017 United Nations study sys
tematically analyzed climate change with respect to social justice and concluded that “initial inequality causes the disadvantaged 
groups to suffer disproportionately from the adverse effects of climate change, resulting in greater subsequent inequality” (Islam and 
Winkler 2017 emphasis in original). There are numerous examples of such situations. For instance, Meta and Amazon are known to 
have shown interest in building data centers in Spain and in the US state of Arizona state respectively (both regions being prone to 
drought). These examples of Global North countries add to the list of similar practices happening in the Global South, where the 
consequences of climate changes are more likely to affect citizens. For instance, Amazon (among other organizations) is building data 
centers in Huechuraba (Chile), a district with ongoing drought problems. Amazon’s spokespersons reported that the organization is 
“DIA (Declaration of Environmental Impact) compliant20”, yet this begs the question as to whether organizations realize that legal 
compliance does not equate with being ethical.

In a similar way, in January 2025, Alibaba (a Chinese multinational technology company specializing in e-commerce, retail, 
Internet, and technology) opened a data center in Querétaro, Mexico, allegedly to bring “world-class cloud technology to support local 
businesses21”. Here too we wonder about the extent to which local communities will be penalized, as data centers are water and 
electricity demanding and Mexico is already a country where both resources are scarce. Amazon, Microsoft and Google together make 
up 65 % of the world’s cloud service market and are the leaders in data centers in Africa, with operations mainly concentrating in South 
Africa.22 The IEA23 (International Energy Agency) forecasts that the US and China, the world’s two top greenhouse gas polluters, could 
consume a lot more electricity by 2027. In addition to large providers wanting to build data centers in the Global South, local or
ganizations are also building their own data center infrastructures. For instance, in Nigeria, organizations are building their own data 
centers, which represent affordable alternatives for local communities, if compared to large providers.24 While on the one hand one 
might suggest that large providers take advantage of weak economies in the Global South, on the other hand, it is arguable that if a data 
center has to be built in a weak economy, larger providers could be better positioned to use more energy-efficient hardware (when 
compared with local providers that may not be able to invest in energy-efficient equipment) and offer more capabilities to benefit the 
region or country.

All the above evidence is worrying, given that countries that intensely use AI to foster automation release a disproportionally higher 
level of AI-related pollution to the environment as compared with countries that minimally use AI. However, the impact of AI on the 

18 https://environment.ec.europa.eu/topics/circular-economy/green-claims_en.
19 https://earth.org/is-carbon-offset-a-form-of-greenwashing/.
20 https://restofworld.org/2024/data-centers-environmental-issues/.
21 https://www.scmp.com/tech/big-tech/article/3299333/alibaba-opens-first-data-centre-mexico-ramping-ai-infrastructure-expansion
22 https://www.canalys.com/newsroom/worldwide-cloud-services-q2-2024.
23 https://www.iea.org.
24 https://restofworld.org/2025/aws-google-cloud-nigeria-alternatives/.
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environment is felt globally. For instance, India (which has nearly 18 % of the world’s population) generates just 3 % of the world’s air 
pollution but pays a high price due to global warming (e.g., it recorded temperatures as high as 110 ◦F/43.3 ◦C in June and July 
202225). In June 2023, temperatures in India reached the “limits of ‘survivability’26” with 116 ◦F/47 ◦C recorded in Uttar Pradesh, 
affecting 220 million people, and causing nearly 50 additional deaths. In the same period, Phoenix, Arizona, US (where Microsoft has 
built data centers), reached temperatures over 109 ◦F/42.7 ◦C. But Arizona and Uttar Pradesh differ substantially. Most residents in 
Arizona can adequately deal with hot temperature; more than 90 % of urban homes have air conditioning systems.27 Meanwhile, in 
Uttar Pradesh very few people have air conditioning systems.28 However, only 8–10 % of Indian households have air conditioning 
systems, and the electricity itself is often subject to outages29 (Pavanello et al., 2021).

Overall, the Global North generates more heat, and its residents deal with it by fighting high temperatures using resources that, in 
turn, contribute to global warming. On the other hand, the Global South contributes far less to global warming but suffers more 
because it generally does not have the resources to deal with it, and air conditioning systems make matters even worse because they 
consume yet more electricity. This reflects evidence that countries and populations that contribute the least to global warming pay the 
highest price. In 2023, The Guardian conducted a study with Oxfam30 and the Stockholm Environment Institute31 (among others) 
called The Great Carbon Divide in which they studied causes and consequences of carbon inequalities and the disproportionate impact of 
rich individuals and countries (named “the polluter elite”). According to the study, it would take 1,500 years for someone in the bottom 
99 % of the world’s population to produce as much CO2 as the richest billionaires do in one year.

The 2023 AI global index32 benchmarks 62 countries based on their AI investment, innovation, and implementation. The US, China, 
and the UK top the list, while Kenya, Nigeria, and Pakistan are the bottom three. As the deployment of GAI becomes prevalent, AI’s role 
in global warming will also increase, further penalizing countries that don’t use this technology. If we focus on local contexts, the 
benefits of using AI are remarkable. For instance, consider smart cities (which we discuss later in this article): regulating traffic could 
lower CO2 emissions to a degree that more than compensates for the emissions that result from running AI models that calculate how to 
regulate traffic. However, by definition, global warming is a “global” issue. Therefore, the logic that relies on AI’s cost-benefit analysis 
should shift from a local to a global perspective. Is it ethical to reduce the pollution in San Francisco with advanced (and resource 
demanding) GAI models, if doing so means releasing greenhouse gases contributing to global warming, and thereby penalizing other 
regions in the world with little to no means to cope with rising temperatures, such as the previously mentioned example in India? We 
argue that it is dangerous to try to measure AI pros and cons locally, because this (typically Western) approach ignores (local) Global 
South realities where AI is seldom used, and where populations experience only the negative consequences of the mass adoption of 
innovations (including AI) generating greenhouse gases.

National and global regulations: protecting (or not) the environment from AI use

The emergence of algorithmic-based data collector systems, associated with the massive use of AI (and more recently GAI) have 
increasingly become the focus of government regulations (see the EU’s General Data Protection Regulation33 (GDPR) and AI Act,34

China’s Personal Information Protection Law35 (PIPL), and the US’ Blueprint for an AI Bill of Rights36). These regulations focus mainly 
on data privacy (cf. GDPR and PIPL), something now very relevant to AI, if we consider that the level of confidentiality with which 
prompts from users are treated is unclear (cf. EU AI Act and US AI Bill of Rights). However, most countries lack specific regulations on 
how organizations should (or should not) use AI in a sustainable fashion. For instance, the EU’s AI Act mentions that “This regulation 
aims to ensure that fundamental rights, democracy, the rule of law and environmental sustainability are protected from high-risk AI”, 
but it does not specify what kind of high-risk activities qualify as dangerous for the environment. The AI Act distinguishes between low, 
medium, and high risk (of using AI) based on the extent to which humans are directly affected by the consequences of using AI.37 For 
instance, an AI that prioritizes access to an important vaccine would be defined as high risk because its outputs are close to humans 
(and a problematic algorithm would impact them directly), whereas an AI that serves as a videogame engine or that manages an 
antispam system would be defined as low risk. The problem here is about invisible connections between, e.g., training a LLM and the 
consequent harm to humans. In addition, the EU’s framework doesn’t account for the secondhand environmental implications of using 
AI. For instance, how much greenhouse gas production does programming and using videogames cause? AI and videogames are 

25 https://www.technologyreview.com/2022/07/05/1055436/download-india-deadly-heatwaves-climate-change-carbon-removal/.
26 https://www.cnn.com/2023/06/26/india/india-heatwave-extreme-weather-rain-intl-hnk/index.html.
27 https://www.theguardian.com/us-news/2022/jan/27/phoenix-arizona-hottest-city-cooling-technologies.
28 https://www.npr.org/sections/goatsandsoda/2022/08/02/1114354904/opinion-life-hacks-from-india-on-how-to-stay-cool-without-an-air- 

conditioner.
29 https://www.theguardian.com/world/2023/dec/05/india-unstoppable-need-air-conditioners.
30 https://www.oxfamamerica.org.
31 https://www.sei.org.
32 https://intersog.com/blog/ai-dominant-players-and-aspiring-challengers/ (raw dataset of this study available here: https://www.kaggle.com/ 

datasets/katerynameleshenko/ai-index).
33 https://gdpr-info.eu.
34 https://www.europarl.europa.eu/news/en/headlines/society/20230601STO93804/eu-ai-act-first-regulation-on-artificial-intelligence.
35 http://en.npc.gov.cn.cdurl.cn/2021-12/29/c_694559.htm.
36 https://www.whitehouse.gov/ostp/ai-bill-of-rights/.
37 https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai.
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considered low risk because the EU framework is blind when it comes to proxy effects.
In the US, the AI Bill of Rights focuses on sustainability in an even more indirect way. It primarily concentrates on unwanted 

consequences of AI (and automated systems in general) such as biases that can lead to discrimination and privacy issues (e.g., personal 
data being used without consent and intellectual property issues in reference to how GAI is trained with Internet data). What is more, 
the US AI Bill of Rights is nonbinding, which means that, at present, it contains only unenforceable recommendations. Linking an 
imperfect algorithm to an environmental problem will be even harder than is the case with the EU regulations. Interestingly, on 
February 1, 2024, Senator Edward J. Markey of Massachusetts introduced the Artificial Intelligence Environmental Impacts Act to 
regulate how organizations measure and report AI’s environmental impacts.38 This Act represented an important policy step, espe
cially given the notoriously poor extent to which the US has engaged with environmental issues (Marabelli 2024). However, in 2025, 
the Trump administration has reverted most AI-related protections for end users. For instance, the January 23, 2025 presidential 
executive order titled “Removing Barriers to American Leadership in Artificial Intelligence” Section 5 officially revoked the 2023 
executive order 14,110 “Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence”, essentially allowing companies 
to develop GAI systems with very few guardrails, including environmental considerations.

China’s PIPL doesn’t contain environmental recommendations and is more focused on data privacy, even if its impact on GAI is and 
will be substantial, especially with respect to how this technology leverages user prompts to train its algorithms. Nevertheless, China 
lately has taken strong actions to force organizations to reduce their carbon emissions, and AI seems to contribute positively to that 
reduction. For instance, several AI initiatives in China contribute to reduce carbon emissions by improving industrial and information 
structures and enhancing innovations that support green technology (e.g., innovations focused on smart cities) (Chen et al., 2022). 
Other examples in China that focus on the environment include initiatives to build underwater data centers.39 The underwater setting 
naturally cools the hardware, which saves electricity and fresh water while also preserving land space.40

Overall, most jurisdictions lack legislation that considers the impact of AI on the environment. Therefore, more such legislation is 
required to ensure that organizations take advantage of AI systems ethically, i.e., with environmental considerations kept firmly in 
mind. The greenhouse gas emissions associated with GAI use currently constitute a relatively small fraction of the total volume of 
emissions. However, AI continues to grow at a fast pace and as result the fraction will increase in size. It is our opinion that legislation 
should be promulgated globally to promote its ethical use. Overall, organizations are revenue-driven and very few of them will adopt 
environmental-friendly policies if these policies penalize their bottom line, unless they are legally mandated to do so.

Strategic use of AI for the environment

Environmentalist movements that push organizations to behave ethically, together with newly enacted laws and regulations 
(companies are generally responsive to both due to profits/reputation and compliance issues, respectively), have led to AI initiatives 
that address ethical AI issues that relate to the environment and specifically global warming. For these reasons, a number of initiatives 
have emerged in recent times which aim to take advantage of the potential of AI to mitigate threats posed by climate changes, and the 
associated global warming issues such as extreme weather conditions such as storms/hurricanes/cyclones, droughts, wildfires, and 
floods. Organizations, public administrations and governments have the opportunity to use AI strategically, and the duty to do so 
ethically, in order to positively affect climate changes thereby showcasing ethical behavior and conduct.

We next lay out ways in which organizations can pursue AI strategizing, in the context of climate change. While the list below is not 
meant to be comprehensive, we believe that it is a good start to bring awareness of the fact that AI, along with its environmental 
pitfalls, can nevertheless be used ethically and strategically, to address climate changes.

Smart cities: This refers to cities designed with embedded technologies that provide automated services to citizens and minimize 
natural resource use. These cities can use data that AI systems collect via sensor technologies to engage in such activities as: improving 
traffic flow, optimizing water supplies, handling waste, investigating criminal activity, and performing other community services 
(Musa 2016). Digital twin technologies can help redesign key city operations (such as traffic) as in Barcelona, which has begun to 
create its digital twin. Sensors around the city collect real-time data to help decision makers make AI understand how to analyze and 
predict traffic and energy usage. In a 2024 interview with the Financial Times,41 Jordi Cirera Gonzalez, director of the Knowledge 
Society at Barcelona City Council, said that “Thanks to AI, we can answer questions about what is going to happen without knowing 
exactly the law that drives the system… but you need good data. Without it, you cannot train an artificial intelligence system.” This 
surfaces a potential ethical issue concerning how much data from private citizens must be collected to build a digital twin to develop 
smart cities. For instance, residents wanting to access “smart parking” might need to accept being monitored (via a GPS-equipped car’s 
onboard devices). Only wealthy people will be able to buy their privacy by paying for more expensive parking spaces.

Smart farming: also known as digital (or e-) agriculture, smart farming concerns farmers’ ability to collect and analyze data 
(including with AI systems) on various harvesting-related activities. The United Nations considers smart farming a digital revolution in 

38 https://www.markey.senate.gov/news/press-releases/markey-heinrich-eshoo-beyer-introduce-legislation-to-investigate-measure- 
environmental-impacts-of-artificial-intelligence.
39 https://www.scmp.com/news/china/science/article/3299313/chinas-subsea-data-centre-could-power-7000-deepseek-conversations-second- 

report.
40 https://circleid.com/posts/20231205-china-launches-worlds-first-underwater-data-center.
41 https://www.ft.com/content/45737bf0-8f69-46da-bd0b-98986be74a00.
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the agriculture field.42 For instance, an ML regression algorithm can determine the required water resource level for farming a 
particular crop in a specific season or at certain temperatures (Akkem et al., 2023). Smart farming probably represents one of the most 
advanced, localized AI applications, yet with global reach. For instance, increasing a particular crop’s production in one region via AI 
could benefit (or harm) other, less advantaged regions due to supply/demand effects on sale prices.

Weather forecasting: AI-based weather forecasting systems represent another way in which one can use AI technology for good. 
For instance, recent developments into 3D neural networks have offered substantial improvements to current forecasting models (Bi 
et al., 2023). The World Economic Forum explains43 how AI can outperform mainstream weather forecasting systems with specific 
reference to GraphCast, Google DeepMind’s AI weather forecasting model which Google has trained with 40 years of historical weather 
data.44 Advanced systems that can predict weather in the longer-term (weeks rather than days) can be used globally to deliver timely 
aids to regions hit by heat waves or floods and to alert people in areas that face potential extreme weather conditions, where imprecise 
forecasting might lead to more casualties.45 Thus, more accurate forecasting could help save lives. Weather-related predictions have 
recently involved the forecasting of dust and sandstorms, a very common (and property-damaging and life-threatening) phenomenon 
in countries such as China, Saudi Arabia and Pakistan. Local researchers have recently applied AI models to better predict dust and 
sand storms, potentially saving money and lives in these regions (You 2024).

AI and earthquakes: Until recently, predicting the location, depth and intensity of earthquakes seemed to be an impossible task. 
However, an ongoing project funded by the European Commission called TECTONIC46 seems to have the potential to leverage AI to 
predict earthquakes with a degree of precision that will outperform traditional systems based on historical seismic activities, strain 
accumulation in rocks, and changes in ground elevation.47

AI and wildfires: According to space.com (UK), AI is developing the ability to predict wildfires, a phenomenon that has become 
increasingly common worldwide, because of rising temperatures and droughts.48 Geostatic satellites already do a good job in mapping 
the earth’s “hot spots”, i.e., those more prone than other areas to wildfires. AI can analyze factors including the emergence of smoke, 
the incidence of fires and the disturbance of vegetation, and relate them with other parameters such as vegetation type, climate, 
landscape, fire susceptibility mapping, and soil deposits in order to identify wildfires patterns (Ahmad et al., 2024). The constant 
evolution of AI applications to aid firefighters managing wildfires is documented by a March 2025 report in the Wall Street Journal, 
which describes techniques such that “AI bots that now serve as digital fire-lookouts and crucial eyes …” and are able to spot wildfires 
via camera sensors before they spread.49

AI and floods: Floods are one of the most common natural disasters which disproportionately affect the Global South, where 
countries often lack dense streamflow gauge networks (Rentschler et al., 2022). A recent Nature study (Nearing et al., 2024) docu
mented how AI can improve predictions concerning floods by using long short-term memory (LSTM) networks (Hochreiter and 
Schmidhuber 1997) to predict daily streamflow through a 7-day forecast horizon. While strong winds due to storms/hurricanes/cy
clones lead to structural damages (buildings, infrastructures, trees), the associated floods are the main cause of loss of lives.

AI and nuclear power: Microsoft recently launched an initiative50 to use nuclear power (CO2 emission-free technology) to boost AI 
systems, which however poses regulatory issues, at least in the US. Nuclear power received attention during the 2023 COP28, the 
United Nations’ annual climate conference. Using nuclear power to supply energy-demanding systems has long been a contentious/ 
controversial subject (e.g., due to the environmental challenges associated with dumping radioactive waste and the hazards associated 
with nuclear accidents). Nevertheless, the possibility of using nuclear power to boost AI systems is worth studying, because nuclear 
power has the potential to be a zero-emission clean energy source, if managed correctly.

Along with the above initiatives, the Stanford 2024 AI index report51 mentions several areas where AI can be used to benefit the 
environment. These include the management of thermal energy storage systems (Olabi et al., 2023), improving waste management 
(Fang et al., 2023), improving efficiency of cooling systems in buildings (Luo et al., 2022), and enhancing urban air quality (Shams 
et al., 2021). However, because we lack accurate means to measure the negative impact of AI on the environment, it is challenging to 
say whether the benefits of AI for the environment outweigh the pitfalls associated with global warming.

Overall, the ethical challenges associated with AI use and the environment may be balanced by strategic opportunities for orga
nizations as well as public administrations and governments. Importantly, as we illustrate above, some grey areas prevent full 
assessment of the risks AI poses to the environment. These concern what it really means for an organization to achieve “zero-net” 
emissions, the (so far) impossibility of accurately quantifying AI’s carbon footprint, and the lack of laws and regulations, locally and 
globally, around the use of natural resources and energy to support AI systems. Table 1 summarizes these insights.

42 https://www.fao.org/3/ca4887en/ca4887en.pdf.
43 https://www.weforum.org/agenda/2023/12/ai-weather-forecasting-climate-crisis/.
44 https://www.science.org/content/article/ai-churns-out-lightning-fast-forecasts-good-weather-agencies.
45 https://www.fastcompany.com/90923189/weather-forecast-heat-wave-accuracy-life-and-death.
46 https://cordis.europa.eu/project/id/835012.
47 https://www.usgs.gov/faqs/can-you-predict-earthquakes.
48 https://www.space.com/how-scientists-are-using-artificial-intelligence-to-predict-wildfires.
49 https://www.wsj.com/tech/ai/these-ai-cameras-detect-wildfires-before-they-spread-6b6e3229.
50 https://www.wsj.com/tech/ai/microsoft-targets-nuclear-to-power-ai-operations-e10ff798.
51 https://aiindex.stanford.edu/wp-content/uploads/2024/04/HAI_AI-Index-Report-2024.pdf.
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Looking forward: practical solutions and a research agenda for IS scholarship

At the present time, considerable uncertainty surrounds the development of AI, and especially GAI, whose LLMs are very resource 
hungry. Nevertheless, we foresee practical solutions as well as important research opportunities for IS practitioners and scholars 
engaged in the strategic use of emerging technologies such as AI (i.e., AI strategizing) to deal with, and contrast climate change.

Practical solutions to address global warming with GAI

With respect to practical solutions, we argue that there are two main ways AI’s resource-demanding nature could be addressed. The 
first concerns exploring techniques that can train models with relatively small datasets including models that can be trained with as 
few as 10,000 data points, which would substantially reduce energy demand. This is supported by research suggesting that, in cir
cumstances where outcomes are known, neural networks (AI computer systems modeled on the human brain and nervous system) may 
require only minimal amounts of training data (so-called shallow neural networks). One major limitation of this approach is that small 
datasets can be used only in specific settings, and can be hardly applied to GAI (Ng 2021). It is also worth noting that using small 
datasets, along with addressing environmental issues, can help deal with risks associated with AI being trained with its own data, a 
phenomenon known as AI cannibalism (Marabelli 2024). In fact, GAI outputs are increasingly populating online platforms and dis
cussion groups. Nina Schick from Yahoo Finance projected that, by 2025, nearly 90 % of online content could be created by GAI.52

Deepseek, a Chinese GAI organization headquartered in Hangzhou, Zhejiang, is currently developing LLMs whose training costs are 
dramatically lower than those of other organizations such as OpenAI. This process, known as “distillation”, aims at creating models 
that are cheaper (and less energy demanding) to produce and less expensive for organizations to adopt.53 On paper, Deepseek has the 
potential to positively affect GAI’s impact on the environment. However, some argue that when AI models become cheaper and 
therefore more accessible to organizations, then they also become more widespread, partially offsetting the benefits associated with 
distillation.

The second way to address AI’s resource-demanding nature concerns using renewable (green) energy sources to power this 
technology, given that in some instances natural resource-demanding LLMs must be employed. However, these resources are scarce and 
should be used in tandem with strategies concerning how and where data centers are built; for instance, it is important to identify 
locations with cooler climates while minimizing the disruption of local sites and landscapes, or even to build data centers underwater 
(Periola et al., 2022).For instance, along with underwater data centers previously mentioned in China, Microsoft is undertaking a large 
scale project (Project Natick) that concerns building underwater data centers near some of the US’s coastal cities.54 Additional ideas 
(perhaps premature, yet worth mentioning for completeness of information) concerning strategic locations where to build data centers 
include outer space. In fact, in March 2025, Lonestar,55 a US-based data storage and recovery organization explored opportunities to 
store data in outer space. Outer space provides unlimited access to solar power; it is possible to radiate excess heat in space, according 
to Damien Dumestier, a space systems architect at the European aerospace conglomerate Thales Alenia Space.56

While GAI benefits not related to the environment go beyond the scope of this viewpoint article, it is important to mention potential 
GAI strategic uses in a variety of contexts. Examples include healthcare/disease prevention, educational settings to assist people with 
disabilities and promote inclusion in schooling, disaster management and the streamlining of production processes for the faster 
distribution of life-saving resources.57 These are just a few examples of the bright side of GAI. But we wonder if, looking forward, all 
these GAI benefits shouldn’t be put on hold, at least in part, as an unlivable environment will prevent the mass diffusion of positive AI- 

Table 1 
AI and the Environment.

Situations Challenges Opportunities Call for actions for IS scholars

− Current AI models require 
massive datasets

− Reducing the size of AI 
training data

− Designing smart cities 
and farming

− Building on topics such as green IT and sustainability to 
more specific topics on AI and the environment

− AI is increasingly becoming 
resources hungry

− Identifying 
various”green” resources

− Improving weather 
forecasting

− Creating opportunities for topical discussions (i.e., panels, 
tracks) at IS conferences

− AI organizations need to build 
large, cost-efficient data 
center

− Limiting offshoring of 
data centers

− Improving timely alert 
systems for earthquakes

− Promoting cross-disciplinary research involving natural and 
applied science and computer science scholars, for instance

− AI uses hold “hidden” negative 
effects, e.g., on gig workers

− Considering indirect 
effects of intense use AI

− Increasing prediction of 
wildfire spreads

− Considering the key role of institutional theories in framing 
country-level and global issues associated with AI’s impact on 
the environment

− AI’s supply chain involve 
intense use of human capital

− Avoiding exploitation of 
workforce

− Using nuclear power to 
power AI (and more)

​

52 https://finance.yahoo.com/news/90-of-online-content-could-be-generated-by-ai-by-2025-expert-says-201023872.html.
53 https://www.ft.com/content/c117e853-d2a6-4e7c-aea9-e88c7226c31f.
54 https://natick.research.microsoft.com.
55 https://www.lonestarlunar.com.
56 https://www.technologyreview.com/2025/03/03/1112758/should-we-be-moving-data-centers-to-space/.
57 https://insights.fusemachines.com/possibilities-for-ai-driven-growth-in-underserved-countries/.
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related innovations, and thus render nugatory all these potential strategic positives.

A research agenda for IS scholars engaged in topics concerning AI and the environment

Given the increasing relevance of sustainable AI for policymakers, organizations, and society, we believe that IS scholars should 
take this issue seriously. Yet, words are not enough: what actions can we actually take to make a difference? Despite a few exemplary 
contributions on sustainable AI (Nishant et al., 2020; Schoormann et al., 2023) or, more generally, digital sustainability (Dao et al., 
2011; Kotlarsky et al., 2023), the IS field has yet to delve into the topic, even though it very much concerns sociotechnical systems and 
the ethical implications of the design and use of technologies, two key, interwoven subjects that should be central to an IS research 
agenda. For instance, recent articles discussing digital approaches to “Societal Grand Challenges” (i.e., Nambisan and George 2024) do 
not see AI as a threat for the environment at all. Instead, and in line with mainstream views of technology, they only see the potential 
for AI to solve some grand challenges. Interestingly, Nambisan and George (2024), drawing on Ostrom (2010), elaborate on the 
concept of common-pool resources (the environment being one). This provides opportunities to take relevant IS research further and 
theorize on how emerging technologies should (or should not) contribute to managing “commons” such as the air we breathe or the 
atmosphere in which we live.

Our community, the AIS (Association for Information Systems), appears to be increasingly sensitive to technologies and sustain
ability, which sends good signals to related scholarship. Two recent conferences witnessed firstly a panel on the role of IS in (tech
nology-related) sustainability (Ixmeier et al., 2024), and secondly a track on “Societal impacts of IS58”. Thus, sustainability-related 
topics, albeit not specific to AI and the environment, were addressed. Although these efforts may seem paltry, not least because 
they do not focus on the environment specifically, they are at least steps in the right direction. We recognize that studying the 
environmental impacts of AI requires competences that might go beyond the knowledge of most IS scholars. We therefore advocate for 
an interdisciplinary approach that crosses the sociotechnical axis of our field (cf Sarker et al., 2019). This interdisciplinary approach 
should involve both technical as well as behavioral sciences appealing to IS scholars, especially since we view the current and future 
developments of GAI as strategic (and challenging) for organizations, communities, governments/institutions etc. It is not unusual for 
IS researchers to build on the strategy literature. For instance, Nambisan and George (2024) discussion of digital sustainability draws 
on the strategy literature.

In the same vein, strategy scholars will have to borrow insights from the IS literature to highlight GAI characteristics that can be key 
to competitiveness while using this technology in a way that is not detrimental to the environment. Given the interweaving relevance 
of GAI across the two disciplines (IS and Strategy), it is both difficult and of questionable value to separate the two literatures. Indeed, 
we should arguably avoid working in silos and instead aim at cross-fertilization and mutual exchange of knowledge and insights. What 
is however important, in our opinion, is to ensure that GAI is not solely viewed as a strategic asset that can be leveraged to bring 
economic value to the organization. GAI must also be viewed as a technology that has the potential to be detrimental to non-economic 
indicators, including the sociocultural values of humans and the imperative that we respect and conserve the natural environment.

A noninclusive list of potential areas (and associated research questions) that IS scholars engaged in AI strategizing should explore 
are the following:

Concerning AI being “resource hungry”: 

– What are the alternative strategies that avoid broad web scraping practices and could be enacted to train complex models, and what 
is the associated need for computing capacity to process all these data? What are the risks and benefits of using small and synthetic 
datasets? Here, IS scholars could benefit from collaborations with computer science academics and practitioners whose research 
focuses on small-size AI models and datasets. Computer scientist Andrew Ng, one of the pioneers of AI, suggests that it is possible to 
reduce datasets to as few as 10,000 examples, “a sort of threshold where the engineer can basically look at every example and 
design it themselves and then make a decision” (Hao 2021). How could these (technical) insights be incorporated into (and 
contribute to) relevant IS literature?

Concerning the AI value chain: 

– How is it possible to control and limit hidden practices such as the offshoring of labeling processes which add to the already 
prominent ethical issues concerning sustainable AI? Is sustainable AI only an environmental concern, or does the way AI is used in 
practice involve other aspects of sustainability, such as the exploitation of Global South workers through unethical offshoring? The 
IS strategic literature on offshoring is very rich and was pioneered by JSIS (cf. Abbott et al., 2013; Kranz 2021; Schermann et al., 
2016); we believe that scholars can build on this body of research to theorize around environmental issues associated with the AI 
value chain across countries and continents. At the interdisciplinary level, this requires IS scholars to work strategically with 
colleagues in HR (Human Resources) and even Sociology as we explore impacts of AI in other domains.

Concerning measuring AI’s impact on the environment: 

58 https://icis2024.aisconferences.org/submissions/track-descriptions/#toggle-id-5.
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– How is it possible to account for (and measure) secondhand environmental effects of AI? These second-hand effects concern online 
nudging that leads to more (unnecessary) purchases but also to gig workers being asked to perform almost real-time deliveries. 
Almost real-time delivery may include extra trips to the same customer or in the same neighborhood. What are other secondhand 
environmental effects of AI? Allied disciplines here could include Computer Science, Remote Sensing (i.e. use of satellite data), 
Transportation Science, and Operations Research. Here, interdisciplinary research can be pursued by seeking collaborations with 
communities such as the FAccT (Fairness, Accountability, and Transparency) community,59 that studies social phenomena con
cerning AI such as environmental concerns (cf. Dodge et al., 2022) using a sociotechnical lens, but with a strong technical 
background.

Concerning AI and social justice: 

– How is it possible to empower Global South countries and make sure that they too benefit from AI advances? Niche IS communities 
such as ICT4D (Information and Communication Technologies for Development) should play a relevant role in shedding light on 
the societal impacts of environmental changes due to intense use of AI (even in the Global South). For instance, adverse digital 
incorporation (Heeks 2022) is a notion that theorizes around the detrimental impact for countries, societies and cultures that are 
incorporated into digital systems. These issues are prominent in the ICT4D community; in a global environment characterized by 
adverse digital incorporation, the ICT4D research agenda is positioned within the debate on social inclusion in the broader 
spectrum of critical data studies, a field which views data as immersed in their social and political context (Dalton et al., 2016; 
Masiero 2022).

Concerning policymakers: 

– How should governments require organizations to provide AI data in ways that would clearly assess organizations’ standing with 
respect to their actual use of natural resources and electricity? What are the challenges of doing so when global organizations can 
opportunistically move their operations to countries where controls to this end are lacking? Here, it is important that IS scholars 
partner with fellow legal scholars to delve into local as well as global jurisprudence with the goal of advising policymakers in order 
to incorporate AI into comprehensive international initiatives such as the Kyoto Protocol60 and the Paris Agreement.61 We believe 
that the IS community could effectively leverage institutional theories (Powell and DiMaggio 1991; Scott 2008) – already widely 
applied in technology contexts (Currie 2009; Currie and Swanson 2009) and even used to support progress towards building and 
implementing sustainable systems strategically (Butler 2011), to shed light on coercive, mimetic, and normative dynamics between 
governments and organizations and within organizations.

In summary, IS scholars can contribute to solving problems concerning AI and the environment in several ways, spanning from 
technical to more processual and policy-focused aspects of the issue at hand (cf. Sarker et al., 2019). It is possible to identify positive 
aspects of AI concerning global warming. We therefore believe that it is already and will continue to be strategic for organizations to 
generate business models aimed at leveraging AI capabilities to reduce greenhouse gas emissions, thereby offsetting AI’s demands for 
electricity and natural resources. For instance, in a study involving 31 high-tech startups, Böttcher et al. (2024) found that sustainable 
startups were able to leverage digital technologies to create ecological sustainable value propositions without compromising revenue 
streams.

Being environmentally wise should be an ethical principle. In turn, marketing and reputation along with the possibility to pursue 
sustainable business models should encourage organizations to employ AI systems in ways that account for environmental concerns. 
Activists worldwide are already sensitive to environmental problems caused by AI (and associated technologies). For instance, when in 
2023 it became official that Google planned to build a large data center in Uruguay, the Movement for a Sustainable Uruguay62

(MOVUS) became extremely vocal in expressing concerns over potential exploitation of the country’s natural resources. Our com
munity is increasingly becoming sensitive to ethical and societal issues, especially in the aftermath of the COVID-19 pandemic, when 
the AIS decided to hold most conferences in hybrid mode, both so as to promote inclusiveness and to reduce the environmental impact 
associated with travel (Ahuja 2024; Marabelli et al., 2023). In turn, we, as a community, cannot just watch what is happening with AI 
and how our planet’s livability is increasingly compromised on a daily basis (in part, because of unethical use of AI). While AI can (and 
will) positively affect the environment (as we outlined above), we need to make sure that the benefits of AI advances outweigh the 
societal costs, which are distributed unevenly, often penalizing people in the Global South.

Conclusions

AI is nowadays associated with ethical concerns. Its negative effects on the environment are largely overlooked, but will 
increasingly become relevant. Many factors contribute to global warming, not least humankind’s unethical behavior in using our 

59 https://facctconference.org.
60 https://unfccc.int/kyoto_protocol.
61 https://unfccc.int/process-and-meetings/the-paris-agreement.
62 https://movusuruguay.blogspot.com.
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planet’s resources. AI (so far) accounts for a small part of overall greenhouse gas emissions, the main source of global warming. 
However, AI will likely become increasingly widespread and more resource hungry, especially because of the advent of GAI, which 
needs nearly infinite datasets. The IS community has the moral obligation to conduct research and engage with practitioners and 
policymakers regarding whether AI is and will be used ethically (or not) with respect to the environment. However, there are also many 
benefits of AI. It can be used strategically to reduce pollution from traffic in large urban areas (smart cities) and also to improve 
weather forecasting. Nevertheless, it is our opinion that more regulations and global agreements to limit AI’s impact on global 
warming are needed. AI’s impact on global warming currently affects people and populations unevenly. Furthermore, we believe that 
research should consider the indirect effects that AI can have on the environment, such as via web nudging. Ethical issues associated 
with AI’s effects on the environment, along with the strategic opportunities for organizations to use AI “for good”, represent a novel 
research avenue for JSIS authors and readers and, more generally, for IS scholars engaged in topics at the intersection of technology, 
ethics, and the health of our planet.
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A B S T R A C T

Background: Addressing pressing global challenges such as climate change, resource depletion, and food inse
curity necessitates innovative approaches to sustainable food design. Artificial intelligence (AI) is emerging as a 
transformative technology with the potential to significantly enhance sustainability across the food system.
Scope and approach: This review comprehensively examines the integration of AI into sustainable food design. It 
explores technological innovations including AI-driven precision farming, smart food processing, and the 
development of alternative proteins. The paper further investigates AI’s role in optimizing food supply chains 
through predictive analytics and blockchain. Crucially, it also delves into the ethical considerations, environ
mental and social impacts, and the evolving regulatory landscape surrounding AI in food systems, identifying 
future prospects and inherent challenges.
Key findings and conclusions: AI offers profound capabilities to revolutionize food production, distribution, and 
consumption, driving efficiency and reducing environmental footprints. However, realizing its full potential 
hinges on addressing critical ethical concerns like algorithmic bias, data privacy, and social equity, alongside 
mitigating AI’s own environmental impact. A multi-stakeholder, collaborative approach, underpinned by robust 
ethical frameworks and transparent policies, is imperative to ensure the responsible and equitable deployment of 
AI, ultimately fostering a resilient and sustainable global food system for future generations.

1. Introduction

The advent of artificial intelligence (AI) has heralded unprecedented 
transformations across numerous sectors, including food design and 
production. As we venture into an era characterized by rapid techno
logical advancements, it is imperative to examine the intersection of AI, 
ethics, and sustainability within the context of food systems. Food 
consumption plays a pivotal role in the politics of sustainable con
sumption and production due to its significant impact on the environ
ment, individual and public health, social cohesion, and the economy 

(Hotta et al., 2021). The sustainability of food systems and our capacity 
to ensure adequate food and nutrition for present and future generations 
are threatened by population growth, climate change, resource deple
tion, and pollution (Camaréna, 2020). The current agricultural and 
supply chain systems significantly contribute to the issues at hand. To 
transition to sustainable food systems that can support nearly 10 billion 
people within the next 30 years, we need transformational change rather 
than incremental adjustments.

Sustainable food design is an interdisciplinary approach that seeks to 
create food systems capable of meeting the nutritional needs of current 
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and future populations without compromising the health of the envi
ronment, economic viability, and social equity (Gustafson et al., 2016). 
This concept encompasses a holistic view of food production, process
ing, distribution, consumption, and waste management. It aims to 
integrate sustainable practices at every stage of the food chain to miti
gate adverse environmental impacts, enhance food security, promote 
public health, and foster social cohesion (Varzakas & Antoniadou, 
2024). At its core, sustainable food design focuses on reducing resource 
consumption, minimizing waste, and preserving biodiversity. Sustain
able food design addresses the economic aspects by promoting fair trade, 
supporting local economies, and ensuring equitable access to food re
sources (McClements, 2020). The scope of sustainable food design ex
tends to technological innovations, policy frameworks, and ethical 
considerations.

The rapid advancements in AI offer transformative potential for 
sustainable food design. AI technologies, including robotics, predictive 
analytics, and machine learning (ML), are enhancing precision agricul
ture by optimizing resource use and increasing crop yields (Gul & 
Banday, 2024). AI can analyze vast amounts of data, AI can monitor crop 
health, predict pest outbreaks, and provide tailored recommendations to 
farmers, reducing environmental impact. Additionally, AI is revolu
tionizing food processing and manufacturing through automation and 
quality control, ensuring consistency and safety (Karanth et al., 2022). 
In supply chain management, AI enhances transparency and trace
ability, improving food safety and reducing waste. This integration of AI 
within food systems directly contributes to the objectives of sustainable 
food design by fostering resource efficiency, minimizing waste, and 
enhancing overall system resilience.

However, the effective and equitable deployment of AI in food sys
tems necessitates a strong emphasis on ethical considerations and sus
tainability (Craigon et al., 2022). Ethical aspects such as fairness in 
algorithms, safeguarding personal data, and ensuring equal access to 
technological benefits are crucial to guarantee that AI advancements are 
shared equitably and with clarity (Cumming et al., 2024) Moreover, 
incorporating sustainable practices into the creation and deployment of 
AI technologies is essential to ensure the enduring viability and strength 
of food systems (Iqbal et al., 2024). While existing literature extensively 
discusses the individual aspects of AI in food systems and sustainable 
food design, a critical gap remains in the comprehensive, integrated 
analysis of their multifaceted relationship, particularly focusing on the 
intricate ethical and sustainability implications of AI integration within 
food systems. Previous works often address either the technological 
advancements of AI or the principles of sustainable food systems in 
isolation, or they touch upon ethical concerns without a deep, systemic 
examination of their interplay with sustainability goals within this 
specific domain. This review distinguishes itself by providing a holistic 
examination of how AI not only drives sustainable food design but also 
introduces novel ethical and sustainability challenges that demand 
systematic consideration. Our work specifically bridges this gap by of
fering a critical synthesis of current applications, while rigorously 
scrutinizing the ethical pitfalls and long-term sustainability implica
tions, thereby offering a more nuanced and integrated perspective. This 
paper is structured as follows: it begins by providing a comprehensive 
overview of sustainable food design principles and practices. Subse
quently, it delves into the current applications and transformative po
tential of AI across various stages of the food supply chain. Following 
this, it critically examines the ethical considerations and sustainability 
challenges associated with AI deployment in food systems. Finally, the 
paper offers concluding remarks and outlines future research directions 
in this critical area. Priority was given to peer-reviewed journal articles, 
reputable conference proceedings, and authoritative review papers 
published within the last decade, with a focus on interdisciplinary 
research that directly addressed the intersection of AI, ethics, and sus
tainability in food contexts.

2. Technological innovations in sustainable food design

The convergence of advanced technologies and sustainable practices 
is paving the way for transformative changes in food systems. As the 
global demand for food continues to rise, driven by population growth 
and changing dietary preferences, there is an urgent need for innovative 
solutions that ensure food security while minimizing environmental 
impact (Van Dijk et al., 2021). The present agricultural landscape de
mands resilience, stability, and heightened productivity to address the 
escalating needs posed by population growth, climate change, trans
boundary pests, and crop diseases. Meeting these challenges is essential 
to ensure a sustainable and secure food supply for current and future 
generations. The application of AI in agriculture, also known as preci
sion farming, has revolutionized traditional farming practices (Ghosh 
et al., 2024, pp. 67–77). AI-powered tools and systems assist farmers in 
making informed decisions, utilizing resources efficiently, and 
improving crop productivity, with advancements in AI-based agriculture 
and precision farming outlined in Table 1. By leveraging ML algorithms 
and predictive analytics, precision farming can monitor soil health, 
predict pest outbreaks, and provide real-time recommendations for 
irrigation and fertilization (Elango et al., 2024). This not only boosts 
productivity but also reduces the environmental footprint of agriculture 
by minimizing water and chemical usage.

Technological advancements in food processing are crucial for 
enhancing efficiency, ensuring quality, and reducing waste. Smart food 
processing technologies, such as AI-powered robotics and computer 
vision, streamline operations and maintain product consistency 
(Jambrak et al., 2021). Fuzzy logic techniques have been used in the 
food business for food modeling, control, and classification as well as for 
solving food-related issues, they could analyze factors like temperature 
fluctuations during transport, humidity, and ethylene levels to predict 
the remaining shelf life of fruits and vegetables more accurately than 
traditional methods (Mavani et al., 2021). These innovations enable 
real-time monitoring and quality control, ensuring that food products 
meet safety standards. AI-powered cucumber harvesting robots equip
ped with advanced computer vision systems and sophisticated 

Table 1 
Technological innovations in AI-driven agriculture and precision farming.

Technological 
innovations

Description Benefits Reference

AI driven 
management 
system

Integration of AI for 
data collection, 
analysis and decision 
making in crop health 
and management.

Enhanced efficiency 
and precision in 
resource utilization.

Potluri 
et al. 
(2024)

Crop monitoring 
and 
management

Use of AI to monitor 
crop health, predict 
harvest and optimize 
input like fertilizers 
and pesticides.

Increase crop 
productivity and 
reduce environmental 
impacts.

Naresh 
et al. 
(2020)

Deep learning 
for pest 
management

Control pest 
infestation.

Early detection and 
control of pests, 
minimizing crop 
losses.

Benos 
et al. 
(2021)

Data collection 
devices

Collect data on light, 
temperature, 
humidity, rainfall and 
fertilizer 
concentrations.

Comprehensive 
environmental 
monitoring for 
optimal growth 
conditions.

George 
et al. 
(2020)

Satellites and 
imagery 
drones

Real time monitoring 
of agriculture lands.

Improved accuracy in 
crop health 
assessment and 
resource allocation.

Dagur 
et al. 
(2024)

Predictive 
analysis

Potential issues like 
pest outbreaks and 
abiotic stress factors.

Proactive 
management and 
mitigation of risk.

Linaza 
et al. 
(2021)

Optimization of 
resources

Optimize the use of 
water, pesticides and 
fertilizers

Reduced waste and 
enhance 
sustainability.

Sharma 
et al. 
(2020)
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hardware, including autonomous vehicles, manipulators, and 
end-effectors, have been engineered (Nath et al., 2024). These innova
tive robotic systems possess the capability to accurately detect and 
image the ripeness of cucumbers, thus enhancing the efficiency and 
precision of the harvesting process. Additionally, AI-driven predictive 
maintenance can prevent equipment failures and reduce downtime. 
Innovations in waste reduction, including the use of AI to predict and 
manage food surplus, contribute to more sustainable food systems by 
minimizing waste at every stage of the supply chain (Kumar et al., 
2021). As concerns over the environmental impact of conventional an
imal agriculture grow, alternative protein sources such as plant-based 
and cultured meats offer promising solutions. The development of 
alternative proteins and lab-grown foods represents a significant leap 
toward sustainable food systems (De Oliveira Padilha et al., 2022) These 
innovations not only reduce the reliance on resource-intensive livestock 
farming but also address issues related to animal welfare and food se
curity. AI plays a critical role in optimizing the production processes of 
these alternative proteins, from formulation to manufacturing, ensuring 
that they are both sustainable and scalable (Nikkhah et al., 2023). The 
application of AI in food industry in discussed in Table 2. The significant 
advancements in AI application across agriculture, food processing, 
alternative proteins, and waste reduction highlight its overarching po
tential to enhance efficiency and sustainability within food systems. 
These diverse applications collectively underscore how AI is not merely 
optimizing individual stages but is also poised to revolutionize the entire 
food supply chain, a topic further explored in the subsequent section.

3. AI in food supply chain optimization

The efficient and sustainable delivery of food from producers to 
consumers hinges on the optimization of food supply chains (Anwar 
et al., 2023). AI offers transformative capabilities in this domain, 
encompassing predictive analytics for demand and supply management, 
blockchain for transparency and traceability, and AI-powered logistics 
and distribution efficiency (Abaku et al., 2024). These integrated tech
nologies are crucial for enhancing the resilience, responsiveness, and 
sustainability of modern food supply chains, thereby directly contrib
uting to the broader goals of sustainable food design discussed previ
ously. AI-driven predictive analytics plays a pivotal role in managing the 

dynamic nature of food supply and demand (Elufioye et al., 2024). By 
analyzing vast datasets from various sources such as historical sales, 
market trends, weather patterns, and consumer behavior, AI algorithms 
can forecast demand with high accuracy (Zong & Guan, 2024). These 
precise predictions enable producers, distributors, and retailers to make 
informed decisions regarding inventory management, production plan
ning, and resource allocation (Zatsu et al., 2024). The immediate ben
efits include minimized food wastage due to overproduction or spoilage, 
reduced stockouts that disrupt consumer access, and an overall 
improvement in supply chain efficiency. The ability to anticipate fluc
tuations in demand also allows for better coordination and timely ad
justments, ensuring that food reaches consumers when and where it is 
needed most, aligning with the principles of food security and resource 
optimization. Transparency and traceability are essential components of 
a sustainable food supply chain, fostering trust and accountability (Khan 
et al., 2020). While blockchain technology itself creates a decentralized 
and immutable ledger of transactions, ensuring that every step in the 
supply chain is recorded and verifiable (Raparthi et al., 2021), the 
integration of AI significantly enhances this capability AI’s role is not 
merely to facilitate a blockchain system but to elevate its utility. AI al
gorithms analyze the vast amount of data stored on the blockchain for 
anomalies, potential fraud, and inefficiencies that might not be imme
diately apparent through raw ledger entries. This intelligent analysis 
allows for a more proactive and comprehensive understanding of the 
supply chain. The combined use of blockchain and AI facilitates 
end-to-end traceability, enabling stakeholders to track the origin, 
journey, and quality of food products with unprecedented detail 
(Tsolakis et al., 2022). The silent feature of blockchain technology for 
supply chain is given in Table 3 blockchain provides the secure, trans
parent, and immutable foundation for data recording. AI then acts as an 
intelligent layer on top of this foundation, extracting deeper insights, 
enabling more sophisticated automation, and improving overall system 
efficiency. They are complementary technologies, but not mutually 
dependent for basic functionality. This enhanced transparency em
powers consumers with increased confidence in food safety and 
authenticity, while producers and retailers can swiftly address any issues 
related to contamination or recalls, mitigating risks and ensuring 
product integrity (Dedeoglu et al., 2023). Therefore, AI acts as an 
intelligent layer on top of blockchain, transforming raw data into 
actionable insights for improved traceability and transparency. The lo
gistics and distribution segments of the food supply chain are critical for 
ensuring timely and cost-effective delivery of products. AI-powered 
systems optimize these processes by using real-time data and ML algo
rithms to enhance route planning, fleet management, and warehouse 
operations. For instance, AI can dynamically adjust delivery routes 
based on traffic conditions, weather forecasts, and delivery schedules, 
significantly reducing fuel consumption and transit times, which 
directly lowers the environmental footprint. In warehouses, AI-driven 
robotics and automation streamline sorting, packing, and inventory 
management, increasing throughput and accuracy. These advancements 
contribute to reduced operational costs, lower environmental impact, 
and improved service levels. The integration of AI technologies in food 
supply chain optimization presents significant opportunities for 
enhancing efficiency, sustainability, and transparency. Predictive ana
lytics, blockchain, and AI-powered logistics collectively enable a 
responsive and resilient supply chain capable of meeting the growing 
demands of a global population. By leveraging these innovations, 
stakeholders can build a food system that is both economically viable 
and environmentally responsible, directly contributing to the over
arching goals of sustainable food design. This seamless integration of AI 
throughout the food supply chain is a critical step towards achieving a 
truly sustainable global food system.

4. Ethical considerations in AI-driven food systems

Food security is a multifaceted issue encompassing the availability, 

Table 2 
Application of AI in food industry.

Food industries Application AI used Reference

Dairy Controlling the 
spoilage of milk 
Lactose removal 
from the milk

Fuzzy logic and 
artificial neural network

Negash et al. 
(2018)
Balieiro 
et al. (2016)

Soft drink and 
beverage

Nutrient content of 
the beverages

Convolutional neural 
network

Hafiz et al. 
(2020)

Fruit and 
vegetable

Sorting, grading of 
vegetables and yield 
assessment

Feed forward neural 
networks and 
photometric camera

Zhang et al. 
(2016)
Patil et al. 
(2021)

Food packaging Cost management 
and packaging 
design

ML and robotics U. Ahmad 
et al. (2022)

New product 
development

Formulations and 
grocery delivery

AI based astrograph 
system

Taneja et al. 
(2023)

Food 
adulteration 
detection

Detection of food 
adulterants

Artificial neural 
network, deep learning 
and stratified cross 
validation.

Meng et al. 
(2022)
Zhang et al. 
(2022)
Cardoso and 
Poppi 
(2021)

Quality control 
and food 
image

Chemical 
composition, 
phenolic and 
flavonoid

Artificial neural 
network

Nath et al. 
(2024)
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access, utilization, and stability of food systems. AI-driven food systems 
have the potential to address these challenges by optimizing agricultural 
practices, improving supply chain efficiencies, and enhancing food dis
tribution networks (Ahmad et al., 2024). However, the integration of AI 
must be approached with critical ethical considerations to ensure 
equitable access to food resources and avoid exacerbating existing 
inequalities.

The ethical implications of AI in food systems are complex and 
manifest at various stages of design, application, and outcome. One of 
the most critical aspects is algorithmic bias, which can stem from 
incomplete, unrepresentative, or skewed datasets used to train AI 
models (Belenguer, 2022). For instance, an AI algorithm designed to 
optimize food distribution might inadvertently prioritize areas with 
more readily available historical data (e.g., urban centers) over 
marginalized rural communities, leading to unfair resource allocation 
(Mayuravaani et al., 2024). Similarly, AI in agricultural 
decision-making, such as predicting optimal fertilizer use or crop yields, 
could be biased if trained predominantly on data from large-scale, 
technologically advanced farms, thus failing to accurately serve the 
needs of smallholder farmers or diverse agricultural practices 
(McLennon et al., 2021). This bias can lead to unequal outcomes, where 
technological benefits disproportionately favor certain groups, 
compromising the goal of equitable food security (Siddiqui, 2024). 

Addressing this requires a comprehensive approach, including meticu
lous data curation to ensure diversity, the development of robust data 
auditing mechanisms, and the promotion of diverse and inclusive 
development teams to mitigate inherent human biases in algorithm 
design. Beyond bias, ethical concerns also vary with different types of AI 
applications: 

• Predictive Analytics and Machine Learning: While powerful for 
early detection of disease outbreaks, risk prediction, and monitoring 
of foodborne pathogens (Qian et al., 2022), these systems heavily 
rely on vast amounts of data, raising significant data privacy and 
security concerns. The collection and analysis of consumer data, for 
instance, necessitates strict adherence to regulations like GDPR 
(European Union, 2018) and the implementation of robust cyberse
curity measures to maintain consumer trust. The potential for misuse 
or unauthorized access to sensitive agricultural or consumer data is a 
critical ethical challenge.

• Robotics and Automation: AI-powered robotics in harvesting (Nath 
et al., 2024) or smart processing facilities (Jambrak et al., 2021) 
introduce ethical questions related to job displacement and the need 
for just transition strategies for agricultural laborers. While 
increasing efficiency, the social impact on livelihoods must be 
carefully managed to prevent exacerbating socio-economic dispar
ities within the food system.

• Computer Vision and IoT: These technologies, used for monitoring 
crop health or predicting shelf life (Mavani et al., 2021), generate 
vast quantities of data. The ownership and control of this data 
become critical ethical issues, particularly for farmers who may find 
their proprietary information used by larger corporations without 
equitable benefit or consent.

Central to mitigating these ethical challenges is the establishment of 
robust accountability and transparency frameworks. Accountability, 
conceptualized as a policy framework encompassing principles of trust, 
inclusivity, transparency, and verification (Kraak et al., 2014), ensures 
that stakeholders are held responsible for the design, deployment, and 
outcomes of AI systems. This includes clear lines of responsibility for AI 
failures or biased outputs. Transparency in data practices, coupled with 
explainable AI models, is crucial for fostering trust among consumers, 
farmers, and industry stakeholders. While proprietary information must 
be protected, a balance is needed to ensure that the logic and 
decision-making processes of AI systems are understandable, allowing 
for scrutiny and correction. Enhancing supply chain transparency, for 
example, necessitates reducing information asymmetry and promoting 
less opaque decision-making processes, particularly where algorithmic 
bias could privilege one group over another (Manning et al., 2022). AI 
holds immense promise for enhancing food safety and security, its 
deployment must be rigorously guided by ethical principles. Addressing 
bias in design, considering the varying ethical issues across different AI 
applications, and establishing strong frameworks for data privacy, 
accountability, and transparency are paramount. Critically examining 
and mitigating these ethical challenges is essential to ensure that 
AI-driven food systems contribute to a more secure, equitable, and 
sustainable food future for all. The pervasive issue of bias, in particular, 
warrants continued investigation and proactive mitigation strategies in 
future research endeavors.

The successful integration of AI into food systems is fundamentally 
tied to addressing complex ethical considerations, particularly con
cerning bias, data privacy, and accountability. These ethical consider
ations directly underpin the broader environmental and social impact of 
AI in food design. While AI offers immense potential for enhancing 
sustainability and efficiency, its deployment also carries significant 
implications for ecological well-being and social equity, which must be 
proactively managed to achieve genuinely sustainable food systems.

Table 3 
Key features of blockchain technology for enhancing food supply chain 
efficiency.

Features Descriptions Benefits for food supply 
chain optimizations

Transparency All interaction between 
supply chain stakeholders is 
managed by the blockchain, 
offering visibility to all 
involved parties.

Enhanced visibility and trust 
among stakeholders; easy 
tracking of food products.

Immutability The write once ledger 
prevents any modification 
of stored data.

Ensure data integrity and 
reliability; prevents fraud 
and tempering in food supply 
chain

Timestamped 
transactions

All transaction is recorded 
with timestamps, allowing 
verification of the order of 
events.

Accurate tracking of product 
history and timeline; 
improves accountability.

Robustness Many nodes collectively 
manage operations, 
ensuring system stability 
even if some nodes fail.

Maintain operation 
continuity; ensure reliability 
of the supply chain network.

Decentralized 
control

Digital operations are 
managed by distributed 
nodes, without a single 
controlling nodes entity.

Increase system resilience; 
eliminates single point of 
failures.

Improved privacy Privacy preserving 
mechanisms protect 
sensitive data from 
competitors.

Safeguard propriety 
information; enhances 
stakeholder confidence in 
data security.

Automation 
through smart 
contracts

Smart contracts execute 
within the blockchain 
network, automating 
operation like payment 
transfers.

Streamline processes, reduce 
manual interventions ensure 
transparency in transaction 
executions.

AI powdered 
predictive 
analysis

AI analyses data to forecast 
demand and supply 
optimizing inventory and 
resource allocations.

Reduces food wastage; 
improve supply chain 
efficiency; match supply with 
demand accurately.

Blockchain 
enhanced 
traceability

Blockchain records 
location, quality and 
certification information 
ensuring product 
traceability.

Enhances food safety and 
quality control increases 
consumer confidence in 
product origin

AI driven logistic 
and distribution

AI optimizes route plaining 
and fleet management 
enhancing logistics 
efficiency.

Reduce transportation cost; 
minimize environmental 
impact ensures timely 
delivery.
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5. Environmental and social impact of AI in food design

The environmental impact of AI in food design is a dual-edged sword. 
On one hand, AI offers powerful tools for minimizing the environmental 
footprint of food production and consumption. Precision agriculture, 
powered by AI, optimizes resource use by precisely managing irrigation, 
fertilizers, and pesticides, thereby reducing water consumption, chem
ical runoff, and greenhouse gas emissions. This directly contributes to a 
reduced Ecological Footprint (EFP) in life cycle analysis, encompassing a 
broad spectrum of products and services, thereby representing the 
ecological assets required by a community and the natural resources 
utilized for the production of essential goods and services, as well as for 
the absorption or disposal of waste and by-products. In the context of 
global warming and anthropogenic emissions, EFP—encompassing all 
components such as water and biodiversity—serves as a key indicator of 
greenhouse gas emissions associated with the production of goods and 
services (Więk & Tkacz, 2013). When converted to carbon equivalent, 
the EFP provides a comprehensive measure of environmental impact 
across the entire life cycle of a product or service. The Carbon Footprint, 
a consolidated numerical value encompassing components like Land 
Footprint, Water Footprint, Biodiversity Footprint, Resource Footprint, 
and Food Footprint, is extensively used to identify mitigation and 
adaptation strategies for global climate change (Lal, 2022). Agriculture 
and the food system constitute a large component of the total carbon 
footprint, especially in developing countries like India, China, Japan, 
and South Korea, highlighting the urgency of reduction strategies (Fig. 1
outlines five pillars for Carbon Footprint reduction). AI has the potential 
to significantly reduce the carbon footprint of food systems by opti
mizing various stages. By streamlining supply chains, AI can minimize 
transportation emissions and improve resource allocation Precision 
agriculture, powered by AI, enables farmers to make data-driven de
cisions that enhance productivity while reducing environmental impact 
(Blasch et al., 2020). AI-driven tools can predict optimal growth con
ditions, monitor plant health, and detect pests and diseases, leading to 
more efficient use of resources and lower emissions (Pathan et al., 
2020). Furthermore, advancements in automation, such as harvesting 
robots and food processing robots, enhance environmental sustainabil
ity by reducing food waste, a significant environmental challenge (Van 
Der Burg et al., 2022). Beyond production and processing, sustainable 
packaging solutions are crucial for reducing the environmental impact 
of food. Innovations like biodegradable, compostable, and edible pack
aging offer alternatives to traditional plastics (Sokka et al., 2024). 

Innovations in packaging technology, such as biodegradable and com
postable materials, offer alternatives to traditional plastics. Edible 
packaging, made from natural, plant-based sources, can be consumed or 
biodegraded rapidly, reducing waste. Smart tags, a term introduced by 
researchers, denote a unique integration of intelligent packaging tech
nologies, characterized by visible electronic markers equipped with 
environmental sensing capabilities and augmented by software intelli
gence (Htun et al., 2023). These tags incorporate machine vision, user 
information, and location tracking, facilitating real-time monitoring and 
enhanced communication within the supply chain. Smart labels, 
equipped with sensors, can monitor product conditions in real-time, 
ensuring freshness and reducing food waste (Gligoric et al., 2019). 
These technologies not only enhance product safety but also contribute 
to a greener future. However, the development and operation of AI 
systems themselves have an environmental cost. The massive compu
tational power required for training and running complex AI models 
consumes substantial energy, often derived from fossil fuels, contrib
uting to carbon emissions. Data centers, which house AI infrastructure, 
also require significant water for cooling and generate electronic waste 
from discarded hardware (United Nations Environment Programme, 
2024). While the environmental benefits of AI applications in food 
systems are often emphasized, it is crucial to conduct life cycle assess
ments of AI technologies to ensure that the environmental benefits 
outweigh their operational footprint. This demands a focus on devel
oping energy-efficient AI algorithms and hardware, promoting renew
able energy sources for data centers, and establishing responsible 
e-waste management practices.

Concurrently, the social impact of AI in food design is profound and 
requires careful attention, building upon the ethical issues discussed 
previously. The social acceptance and public perception of AI in food 
design are influenced by various factors. While AI offers numerous 
benefits, such as improved efficiency and sustainability, concerns about 
job displacement and data privacy remain prevalent. Public education 
and transparent communication about the benefits and limitations of AI 
can help build trust and acceptance. Engaging stakeholders in the 
development and implementation of AI technologies can also foster a 
positive perception and ensure that AI solutions are aligned with societal 
values and needs. The ethical issue of algorithmic bias, as discussed, can 
have direct social consequences, potentially exacerbating existing in
equalities in food access or resource allocation if not properly addressed 
through diverse development teams, transparent AI practices, and 
continuous auditing. AI has the potential to revolutionize food systems 
by significantly reducing carbon footprints, enhancing packaging sus
tainability, contributing to a greener future. Simultaneously, it holds the 
key to improving public perception through education and engagement, 
fostering social acceptance. (Zatsu et al., 2024). AI continues to evolve, 
it is essential to proactively address both its environmental footprint and 
its social challenges to ensure a sustainable and equitable future for all. 
Recognizing these complex interdependencies, the next section will 
explore the regulatory and policy landscape necessary to guide the 
responsible development and deployment of AI in food design, ensuring 
its benefits are maximized while mitigating its risks for both the envi
ronment and society.

6. Regulatory and policy landscape

The integration of AI in food production is subject to a growing body 
of global regulations aimed at ensuring safety, quality, and ethical 
standards. Regulatory bodies such as the Food and Drug Administration 
in the United States and the European Food Safety Authority in Europe 
have established guidelines that food companies must adhere to when 
employing AI technologies. These regulations address various aspects, 
including data privacy, cybersecurity, and product liability, to mitigate 
risks associated with AI applications in the food industry. Ethical AI 
frameworks are paramount for guiding the responsible development and 
deployment of AI technologies within the food industry, emphasizing Fig. 1. Pillars to reduce Carbon Footprint.
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principles such as transparency, accountability, fairness, and human 
oversight. For instance, the European Union’s AI Act mandates clear 
communication regarding AI system capabilities and limitations, 
ensuring user awareness during AI interactions. Moreover, these 
frameworks advocate for inclusive AI development processes to prevent 
biases and discrimination. The Engineering and Physical Sciences 
Research Council’s Framework for Responsible Innovation, which em
ploys anticipation, reflection, engagement, and action, offers a struc
tured methodology for evaluating the ethical implications and practical 
applications of AI. This approach was utilized to conceptualize a 
fictional data trust leveraging AI for data sharing and decision-making 
within the food supply chain (Craigon et al., 2022), demonstrating 
how stakeholder engagement and diverse perspectives can lead to 
ethically sound and practically viable AI solutions.

Governments and institutions play a pivotal role in shaping the 
regulatory environment for AI in the food industry. Initiatives like the 
India AI Mission are dedicated to establishing a robust AI ecosystem 
founded on principles of safe and trusted AI (Choudhary et al., 2024). 
These efforts include the development of indigenous tools for bias 
mitigation, algorithm auditing, and ethical certifications. By fostering 
collaboration among stakeholders and implementing comprehensive 
regulatory frameworks, governments can ensure the responsible devel
opment and utilization of AI technologies for societal benefit.

While global efforts are underway, the regulatory and policy land
scape specifically within Sri Lanka regarding AI in food production re
mains nascent. The Sri Lanka Association for Artificial Intelligence, 
primarily functioning as an AI research group, is actively involved in 
promoting public awareness, enhancing AI education and research, and 
fostering industry-academia collaborations for real-world AI applica
tions (Chamara et al., 2020). The Sri Lanka Association for Artificial 
Intelligences activities, including promotional programs, short courses, 
research promotion, and an annual AI conference, are crucial for 
building foundational knowledge and capacity. However, the current 
focus is predominantly on research and advocacy rather than the direct 
formulation and implementation of specific regulatory policies govern
ing AI in the food sector. This highlights a significant gap in the Sri 
Lankan context, where the transition from general AI promotion to 
sector-specific regulation for food production is yet to be fully realized. 
This necessitates further development of national policies and frame
works to ensure the safe, ethical, and transparent adoption of AI within 
Sri Lanka’s food industry, aligning with international best practices and 
safeguarding consumer interests. The preceding discussion underscores 
the nascent stage of regulatory development for AI in Sri Lanka’s food 
sector, contrasting with more established global frameworks. This gap 
presents both significant challenges and opportunities as the nation 
looks towards the future. The future integration of AI in food production 
hinges on addressing several critical aspects, ranging from policy 
formulation to technological infrastructure and human capital 
development.

7. Future prospects and challenges

The integration of AI in the food industry is a transformative force, 
fundamentally reshaping sustainable food innovation. This paradigm 
shift is evident in the emergence of precision fermentation, an 
advancement made possible by the convergence of AI, bioinformatics, 
and computational biology. AI technologies are enabling the develop
ment of hyper-personalized meals, eco-conscious consumption, and real- 
time consumer data analysis. These innovations are reshaping the food 
and beverage sector, allowing companies to identify trends, test new 
concepts, and bring products to market more rapidly than ever before. 
Key drivers of this transformation include the need for personalized 
experiences, the use of technology to enhance food interactions, and a 
growing focus on eco-friendly practices. AI is also being utilized to 
create faster, more personalized, and sustainable products by analyzing 
vast amounts of consumer data and gaining real-time insights into 

changing preferences.
The advent of "Food Industry 4.0″ breakthroughs has paved the way 

for novel food product development. Industry 4.0 represents a multi
faceted paradigm that seamlessly integrates physical, digital, and bio
logical realms (Hassoun et al., 2022). Within the agriculture and food 
sectors, this framework leverages cutting-edge technologies such as AI, 
the Internet of Things, advanced smart sensors, robotics, and innovative 
3D printing methods. These synergistic technologies collectively 
modernize and enhance agricultural practices and food production, 
contributing to a more efficient, sustainable, and responsive industry. A 
prime example of sustainable strategies within this context is enzymatic 
hydrolysis, which offers a promising avenue for recovering value-added 
compounds from food waste and by-products (Hassoun et al., 2022, 
Bekhit, et al., 2022). These Industry 4.0 technologies collectively facil
itate the modernization and enhancement of agricultural practices and 
food production, contributing to a more efficient, sustainable, and 
responsive industry. Emerging trends in food industry is given in Fig. 2.

Beyond process optimization, AI is instrumental in developing new 
food ingredients and products. Wang et al. (2022) reported that algae 
could be a functional ingredient which has high amounts of essential 
amino acids. These algae can be an alternative source of protein rather 
than the traditional available sources. Davies et al. (2021) reported that 
ML can develop the information regarding the nutritional composition 
of the packed foods. Furthermore, 3D printing offers significant poten
tial to reduce carbon foot print and minimize raw materials useage in 
food production. Portanguen et al. (2019) stated that textured and 
appealing meat products can be produced which have high nutrition 
values and convenient for people. Despite the numerous benefits, the 
application of AI in food design is not without challenges.

A primary concern is the potential for inherent bias in AI algorithms, 
which can lead to unintended and potentially inequitable consequences 
in food production and distribution. For instance, if training data for an 
AI system reflects existing dietary biases or socioeconomic disparities, 
the AI might perpetuate or even amplify these issues in its recommen
dations or optimized processes. The increasing reliance on AI technology 
also raises critical questions regarding data privacy and security, given 
the sensitive nature of consumer preferences and supply chain data. The 
intrinsic complexity of many AI systems can further result in a lack of 
transparency, making it difficult for stakeholders to comprehend and 
trust the decision-making processes. This "black box" phenomenon can 
hinder accountability and ethical oversight. Moreover, the ethical im
plications of AI in food design extend to potential labor displacement, 
particularly impacting small-scale farmers and producers who may 
struggle to adapt to AI-driven automation without adequate support and 
policy interventions. The socio-economic impacts on these vulnerable 
groups warrant careful consideration to ensure that AI adoption benefits 
all stakeholders within the food system.

Fig. 2. Emerging trends in food industry.
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To realize the full potential of AI in the food industry, it is essential to 
develop a comprehensive roadmap is essential, one that meticulously 
addresses both sustainability and ethical considerations. This roadmap 
should prioritize the development of transparent and unbiased AI al
gorithms, ensuring that AI-driven solutions are equitable and inclusive. 
This means not only technical solutions for bias detection and mitigation 
but also diverse representation in AI development teams. Investment in 
robust education and training programs is crucial to equip all stake
holders, from farmers to food scientists and policymakers, with the 
necessary skills to effectively implement and manage AI technologies. 
Additionally, collaboration between governments, industry, and 
academia is vital to establish regulatory frameworks that promote the 
ethical use of AI in food systems. By fostering innovation while safe
guarding ethical standards, it is possible to create a sustainable and 
resilient AI-driven food system that delivers equitable benefits to all 
members of society.

8. Conclusion

The integration of AI into sustainable food design represents a 
pivotal frontier in addressing some of the most pressing global chal
lenges of our time, including climate change, resource depletion, and 
pervasive food insecurity. As this review has demonstrated, AI’s trans
formative potential extends across various facets of the food system, 
from enabling hyper-precision agriculture that minimizes waste and 
optimizes resource allocation to streamlining complex supply chains for 
enhanced efficiency and reduced environmental footprint. Furthermore, 
AI is a catalyst for disruptive innovations such as the advancement of 
lab-grown foods and the development of intelligent, sustainable pack
aging solutions. These technological leaps are poised to revolutionize 
food production, distribution, and consumption patterns, moving us 
towards a more resilient and environmentally benign food system. 
However, this technological paradigm shift is not without its complex
ities and inherent risks. For AI to truly serve as a force for good in sus
tainable food design, its deployment must be meticulously guided by 
robust ethical frameworks and inclusive policy instruments. As high
lighted, critical concerns such as algorithmic bias, potential privacy 
breaches of sensitive consumer and agricultural data, and the exacer
bation of social inequities demand proactive and comprehensive miti
gation strategies. The environmental footprint of AI itself, encompassing 
energy consumption for data centers and hardware manufacturing, also 
necessitates careful consideration within the broader sustainability 
discourse. Moreover, the socio-economic impacts, particularly the po
tential for labor displacement within traditional agricultural and food 
processing sectors, underscore the imperative for just transition strate
gies and continuous workforce upskilling. Ensuring the successful and 
equitable integration of AI in food systems hinges on core principles of 
transparency, accountability, and meaningful public engagement. 
Stakeholders, from policymakers and industry leaders to farmers and 
consumers, must have a clear understanding of AI’s capabilities, limi
tations, and decision-making processes. As the regulatory landscape 
continues to evolve globally, a concerted effort towards international 
collaboration will be absolutely essential to harmonize standards, share 
best practices, and foster responsible AI adoption that transcends na
tional borders.

Looking ahead, the trajectory of sustainable food design is funda
mentally intertwined with our ability to judiciously balance rapid 
technological advancements with unwavering ethical considerations. 
The imperative is to foster continuous innovation while simultaneously 
safeguarding planetary health and promoting social equity. This ambi
tious vision necessitates a multi-stakeholder, collaborative approach 
that brings together governments, industry, academia, and civil society. 
Only through such unified efforts can we effectively navigate the com
plexities of AI integration, harness its immense potential, and ultimately 
realize a sustainable, AI-driven food system capable of meeting the 
nutritional needs and environmental responsibilities of both present and 

future generations. The challenges are significant, but the potential re
wards of a truly optimized, sustainable, and equitable global food sys
tem, powered by responsible AI, are profound and achievable through 
concerted action.
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Sokka, L., Välimäki, M., Väisänen, K.-., Keskinen, J., Hakola, E., Mäntysalo, M., Ollila, J., 
Happonen, T., Hakola, L., & Smolander, M. (2024). Life cycle assessment of a new 
smart label for intelligent packaging. Flexible and Printed Electronics, 9(1), Article 
015007. https://doi.org/10.1088/2058-8585/ad2279

Taneja, A., Nair, G., Joshi, M., Sharma, S., Sharma, S., Jambrak, A. R., Roselló-Soto, E., 
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The urgency of addressing climate change and achieving a just transition to 
sustainability has never been greater, as the world approaches critical environmental 
thresholds. While artificial intelligence (AI) presents both opportunities and challenges 
in this context, its role in organizational decision-making and expertise remains 
underexplored. This paper examines the interplay between AI and human expertise 
within organizations, focusing on how AI can complement or substitute traditional 
expertise across factual, temporal, and social dimensions. Drawing on Social 
Systems Theory, we argue that while AI excels in data processing and rapid decision-
making, it falls short in contextual adaptation, long-term strategic thinking, and 
social legitimacy—areas where human expertise remains indispensable. And this 
is, we observe, particularly evident in problems connected with climate change 
and sustainability more broadly, where the tensions for organizational decision-
making -and governance become even denser as much in the factual, temporal 
and social dimensions, making them into very complex, ‘super-wicked’, problem 
situations. Thus, there is a need to think more in detail about possible hybrid 
approaches, integrating AI’s computational strengths with human interpretive 
and adaptive capabilities, which may offer promising pathways for advancing 
organizational decision-making in the overly complex, wicked decision-making 
scenarios characteristic of just transitions. However, this requires careful consideration 
of power dynamics, trust-building, and the ethical implications of AI adoption. By 
moving beyond techno-optimism, this study highlights the need for a nuanced 
understanding of AI’s functional and social plausibility in organizational settings, 
offering insights for fostering equitable and sustainable transitions in an increasingly 
complex world.

KEYWORDS

intelligence, expertise, organizations, just transitions, complexity, science-policy, 
interface

Introduction

With the world on the verge of surpassing the 1.5°C threshold set by the Paris Agreement 
and exceeding multiple planetary boundaries, the urgency of transitioning to sustainable 
development has never been greater. While past efforts have been insufficient, a profound 
transformation in production, consumption, and societal organization is imperative to achieve 
carbon neutrality and environmental sustainability.
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Yet, sustainability is not merely about reducing emissions and 
pollution; it must also be just and inclusive. A just transition ensures 
that the burdens and benefits of change are equitably distributed, 
leaving no one behind. In this context, artificial intelligence (AI) 
emerges as both a potential catalyst and a challenge. On one hand, AI 
offers new efficiencies in production, energy management, and 
resource tracking, but on the other, its ecological footprint and 
disruptive effects on employment raise pressing concerns. AI itself is 
a driver of transition, particularly in reshaping labor and decision-
making structures, making it crucial to examine how this shift can 
be made equitable.

The rapid evolution of AI—outpacing regulatory capacities—has 
fueled both optimism and anxiety. While some view it as a 
technological leap toward a better future, others warn of unregulated 
risks. The 2024 “Global Digital Compact,” established at the UN 
Summit for the Future in New York, represents an initial effort to 
harness AI’s potential while mitigating its threats in the pursuit of 
sustainability and equity.

However, meaningful action requires moving beyond hype to a 
deeper understanding of AI’s real impact on society and the conditions 
for a just transition. Much of the existing literature focuses on AI’s 
technical dimensions, often neglecting the broader socio-technical 
dynamics at play. Transformative shifts—particularly those that 
redefine production, consumption, and development paradigms—
cannot be  understood solely as technological processes. They are 
embedded within complex networks of science, regulation, industry, 
economics, and social expectations, unfolding through gradual, multi-
scalar, and non-linear dynamics.1 In this sense, promoting a just 
transition—as well as tackling climate change and sustainability more 
generally- is at its core a matter of decision-making and governance 
(Agrawal et  al., 2022; Underdal, 2010; Billi et  al., 2021). And in 
modern society, a good part of decision-making and governance is 
made in, through or between organizations (Luhmann, 2018; Willke, 
2006) so that understanding if and how AI development can impact—
positively or negatively—organizational decision-making is very 
relevant for the research o just, sustainable and zero-carbon transitions.

This paper contributes to this discussion by examining the 
relationship between AI and expertise within organizations and 
reflecting on the implications—opportunities and challenges—it can 
bring to decision-making relating to climate change and sustainability. 
We argue that understanding expertise’s historical de-humanization 
within organizations is key to assessing AI’s role in a just transition. 
Using Social Systems Theory, we provide a sociological and historical 
perspective to counter the oversimplifications often present in AI 
debates, particularly the tendency to “over-humanize” both 
organizations and AI itself. Then, we  look at how sustainability 
challenges may require rethinking the dichotomy between AI and 
human expertise, moving towards more ‘hybrid’ approaches and thus 

1  Admittedly, these kind of considerations have a much broader application 

than sustainability or climate change issues. Readers may find these arguments 

interesting also for other topics of research. However, in this paper we decided 

to focus on this particular framing as questions of IA and expertise in 

organization and decision-making tend not to be sufficiently considered in 

sustainability and climate change literature, and we believe our approach may 

provide useful insights for this field, as is discussed at length below.

pushing forward the need of more research on how to design and 
implement effective and just forms of human-AI 
expertise hybridization.

The paper is structured as follows: Section II reviews dominant 
theories on technological singularity and AI’s impact on expertise 
within organizations. Section III draws on Social Systems Theory to 
contextualize the evolution of expertise and the pressures toward its 
de-humanization, while Section IV explores whether AI can 
functionally replace expertise in organizations, identifying its limits. 
With this theoretical background, Section V turns to the central 
question: what are AI’s opportunities and challenges in fostering a just 
transition to sustainability? Finally, Section VI offers concluding 
reflections and directions for future research.

Artificial intelligence, expertise and 
organizational decision-making: a 
brief summary

The term Artificial Intelligence broadly encompasses various 
technologies, though most current applications revolve around 
machine learning—algorithms that refine performance through 
exposure to data without explicit programming. Since the 1950s, AI 
development has oscillated between phases of optimism (“AI springs”) 
and stagnation (“AI winters”), constrained by computing power, labor-
intensive data preparation, and the brittleness of early systems 
(Schraagen and van Diggelen, 2021). A turning point arrived in the 
2010s with big data and deep learning, which allowed neural networks 
to autonomously process vast datasets, reducing human intervention 
while introducing new challenges such as data dependence and 
opaque decision-making mechanisms (Jiang et al., 2022).

This progress has fueled a resurgence of speculation about AI’s 
long-term trajectory, including debates over superintelligence and 
technological singularity (Krüger, 2021). Perspectives vary widely: 
skeptics argue that AI’s advancement is overhyped and that true 
singularity remains a distant or unattainable goal, while proponents—
including transhumanists—view it as an imminent and beneficial 
breakthrough. Meanwhile, critics warn of potential risks, ranging 
from job displacement to existential threats (Hoffmann, 2023). 
Although some foresee rapid progress, others highlight persistent 
limitations such as the finite availability of high-quality data and the 
growing computational costs of scaling AI models (Walsh, 2017).

AI’s role in decision-making has evolved in parallel. The first 
significant applications emerged in the 1980s with expert systems, 
which sought to encode human knowledge into structured AI models. 
These systems, however, proved limited in their application, leading 
to the refinement of knowledge-based systems and, later, the 
resurgence of AI-driven decision-making through deep learning 
(Duan et al., 2019). Despite these advances, concerns persist over AI’s 
capacity to replace human labor and the risks associated with 
autonomous decision-making, particularly in high-stakes areas such 
as healthcare, security, and governance (Pilling and Coulton, 2019).

In response, contemporary approaches increasingly emphasize 
hybrid models that integrate human expertise with AI capabilities. 
Many organizational decisions involve uncertainty, complexity, and 
ethical considerations, where AI’s analytical strengths can complement 
human intuition, experience, and contextual understanding (Trunk 
et al., 2020). This shift aligns with a broader redefinition of expertise, 
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moving beyond static domain-specific knowledge to incorporate 
adaptive intelligence, intuitive reasoning, and interdisciplinary 
competencies (Carbonell and Dailey-Hebert, 2021).

Consequently, scholars and practitioners increasingly advocate for 
AI-human hybridization that acknowledges elements of singularity 
debates while preserving the unique strengths of human intelligence. 
As with past waves of automation, AI may not eliminate jobs outright 
but rather transform labor markets, reshaping the nature of expertise 
and the skills required for emerging roles (Jarrahi, 2018). While AI’s 
impact remains uncertain, its integration into organizational decision-
making suggests a shift not toward full automation but toward 
redefining human labor and intelligence in an evolving technological 
landscape (Labraña and Bill, 2015).

Organizations as social systems and 
the role of expertise

Niklas Luhmann’s Social Systems Theory offers a sociological 
framework for analyzing modern society as a system of 
communication (Luhmann, 2013). Rather than focusing on 
individuals or actions, this theory conceives society as constituted by 
communication. Within this framework, organizations are understood 
not as aggregates of persons or goals, but as specific types of social 
systems defined by their ability to produce decisions. From this 
perspective, organizations are forms of social systems that emerge to 
manage complexity and reduce uncertainty in modern, functionally 
differentiated societies. Unlike interaction systems or broader societal 
function systems—such as politics, economy, or education—
organizations are problem-oriented systems that establish structured 
ways of coordinating communications through decisions. While 
organizations are not defined by a specific binary code, as function 
systems are, their operations depend on the continuous generation 
and stabilization of decisions, which in turn create their internal 
coherence against their environment (Luhmann, 2013). This approach 
has been extensively used to analyze the structural and operational 
logic of organizations, highlighting how decisions function as a 
mechanism of systemic closure and continuity (Andersen, 2003).

This focus on decision-making underlines the fundamental 
problem organizations face: the necessity of addressing and reducing 
overwhelming complexity while maintaining its coherence in a 
dynamic environment (Seidl and Becker, 2005). Decisions, as selective 
mechanisms, serve to filter possibilities by determining what aspects 
are included in communication and what is excluded. This ongoing 
process of selectivity underscores the fragility of organizational 
coherence, as every decision, by simplifying complexity, 
simultaneously excludes alternatives, thereby generating risks that in 
turn demand further decisions in a self-producing cycle of further 
decisions. In this sense, organizations are not stable entities, but 
dynamic systems whose continuity depends on their capacity to 
recursively produce decisions (Nassehi, 2005; Seidl and Mormann, 
2014; Luhmann, 2020).

Expertise must be understood within this broader context as a 
phenomenon that does not represent an inherent feature of 
organizations or their initial development. In pre-modern societies, 
coordination within pre-organizational forms—such as guilds, 
religious orders, or early bureaucracies—relied heavily on tradition, 
charisma, or personal authority, which tied decision-making and 

knowledge systems to individual actors and culturally embedded 
norms (Weber, 1978). However, as societal complexity increased, these 
mechanisms proved insufficient to address the demands of more 
differentiated and dynamic environments. Expertise emerged as an 
institutionalized resource in early modernity, serving as a response to 
this growing challenge, decoupling decision-making from individual 
authority and anchoring it in specialized systems of knowledge (Meyer 
and Rowan, 1977). This shift not only allowed organizations to 
manage complexity more effectively, in a way less context-dependent, 
but also contributed to the de-humanization of organizational 
dynamics, as the reliance on personal relationships and intuitive 
authority was replaced by impersonal, procedural, and often 
automated frameworks of knowledge production and decision-
making (Warner, 2007). Expertise thus became embedded within 
roles, credentials, and institutional structures, transforming 
organizations into systems increasingly oriented towards predictability, 
while subordinating interpersonal or traditional forms of coordination 
to the authority of specialized knowledge systems that claimed a better 
understanding of their respective environments (Collins, 1979).

Functional differentiation—the process by which society becomes 
segmented into autonomous subsystems, each with its own rationality, 
language and rules, such as law, economy, education, and science 
(Luhmann, 1982)—has been pivotal in shaping the relationship 
between expertise and the emergence of modern organizations. As 
each subsystem developed its own distinct operational logic, 
organizations emerged as mediating structures tasked with 
interpreting and implementing these logics in context-specific ways 
(Labraña et al., 2025). Financial institutions, for example, became 
critical to the economy by operationalizing financial transactions and 
managing economic flows, while schools aligned themselves with the 
education system by translating pedagogical theories into structured 
learning practices, and courts embedded within the legal system 
transformed legal norms into decisions on concrete cases. In each of 
these instances, organizations required specialized expertise to bridge 
the gap between the abstract, often self-referential operations of 
societal subsystems and the concrete, practical demands of their 
environments. Expertise thus became indispensable, enabling 
individuals within organizations to fulfill their expected roles while 
allowing organizations to adapt and coordinate in response to the 
increasingly abstract and complex demands arising from the 
expansion of functionally differentiated systems (Zald and Lounsbury, 
2010; Labraña and Vanderstraeten, 2020).

Expertise thus became the primary mechanism through which 
organizations structured their relationships with the broader societal 
systems they were embedded in (Luhmann, 2013). By doing so, 
expertise enables organizations to achieve operational stability by 
systematically reducing complexity across the three key dimensions 
of meaning: factual, temporal, and social. In the factual dimension, 
expertise allows organizations to presuppose a stable and predictable 
reality by providing specialized knowledge that delineates domains of 
relevance, framing problems and solutions within bounded contexts. 
This stabilization of communication reduces the need for continuous 
renegotiation of facts, creating a foundation for shared understandings 
among organizational members (Simon, 1991; Weick, 1995). For 
instance, in engineering firms, expertise defines technical parameters, 
enabling clear problem identification and reliable solutions 
(Bucciarelli, 1994). Similarly, in medical organizations, expertise 
grounds diagnoses and treatments in evidence-based practices, 
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fostering a common understanding of health and disease that shapes 
operational decisions (Berg, 1997). Lastly, in schools, expertise 
establishes pedagogical frameworks that stabilize teaching 
methodologies, fostering shared educational goals among educators 
and students (Shulman, 1987). Through these mechanisms, expertise 
aligns organizational practices with the complex demands of the 
societal systems they are embedded in, ensuring that responses are not 
only legitimate but also help reduce environmental complexity in ways 
that are both effective and socially convincing.

In the temporal dimension, expertise operates as a dynamic and 
continuously evolving resource for organizational decisions, 
distinguishing itself from forms of knowledge that often claim timeless 
validity. Its relevance lies in its ability to adapt to changing 
circumstances, functioning as a self-substitutive order that perpetually 
renews itself through the ongoing refinement of the theories and 
methodologies upon which it is ultimately based (Luhmann, 1990). 
For instance, legal expertise evolves to integrate new regulations and 
precedents, while technological expertise advances alongside 
innovations in tools and systems to retain its social effectiveness 
(Teubner, 1987). Central to this process is professional training within 
educational institutions, which serves as the primary mechanism for 
the continual updating and refinement of expertise. Schools and 
universities, especially, play a crucial role by establishing standardized 
frameworks and methodologies designed to equip individuals with 
the knowledge needed to operate as experts in their respective fields, 
ensuring that expertise remains a relevant, adaptive, and useful 
resource in complex organizational environments (Brown, 2001).

In the social dimension, expertise legitimizes decision-making 
processes within organizations by establishing hierarchies of 
knowledge and authority, where the ability to decide is not solely 
based on possessing specialized knowledge but also on being 
recognized as having the authority to do so (Luhmann, 2000). This 
recognition functions as a legitimizing mechanism that is not merely 
an objective reflection of competence but also a socially constructed 
attribution of authority (Stichweh, 1994; Eyal, 2019). In this sense, 
legitimacy is not derived from expertise alone but from the 
institutional and communicative processes that attribute 
trustworthiness and decision rights to certain roles or individuals. In 
turn, this recognition creates distinctions between experts and 
non-experts, facilitating the coordination of decisions and reducing 
complexity within organizations. Based upon this, expertise fosters 
trust and accountability by enabling the delegation of responsibilities 
and the implementation of decisions within a framework of legitimacy, 
reinforcing organizational coherence and ensuring the effective 
allocation of tasks and resources toward shared objectives (Bunz, 
2014). For example, in hospitals, the expertise of doctors and nurses—
validated through certification and training—ensures that medical 
decisions are both credible and authoritative, maintaining trust among 
organizational members and external stakeholders (Freidson, 1970). 
Likewise, in educational institutions, the expertise of teachers and 
administrators—validated through formal qualifications and 
professional development—provides a foundation for decision-
making processes that guide curriculum design, student assessment, 
and resource allocation (Hoyle and Wallace, 2005). By clearly defining 
roles and responsibilities based on expertise, organizations reduce 
uncertainty, minimize conflicts over who has authority to decide on 
which topics, and establish a framework for achieving their goals, 
reinforcing their capacity to respond to internal and external changes.

Artificial intelligence as a (partial) 
functional equivalent of expertise in 
organizational decision-making

The increasing adoption of AI in organizational settings has 
prompted debates about whether it can serve as a functional equivalent 
to human expertise. As explored in the previous section, expertise has 
historically emerged as a mechanism to reduce complexity in 
organizations, addressing uncertainty through the factual, temporal, 
and social dimensions. AI, with its capacity for data analysis, pattern 
recognition, and automation, appears to replicate certain functions of 
expertise. However, when examined in light of a sociologically-
grounded understanding of expertise as outlined earlier, AI reveals 
limitations that challenge its ability to serve as an equally 
comprehensive substitute.2

In the factual dimension, human expertise combines 
generalization and specificity to address organizational challenges 
within bounded contexts. This capacity for contextual adaptation 
allows experts to frame problems in ways that are both precise and 
actionable, drawing on abstract principles and practical experience. 
By contrast, AI systems focus on generalizable patterns derived from 
vast datasets (LeCun et al., 2015). As already discussed above, in the 
first eras of AI, this training often made these systems overfitted to 
specific problem-situation, completely losing any ability to translate 
knowledge from one domain to the other (i.e., they only had a very 
restricted domain expertise, with no general expertise). This was 
called ‘brittleness’. While contemporary approaches to AI, and 
particularly deep learning, have overcome some of these limitations 
thanks to the use of a much broader base of data and parameters, they 
fundamentally still rely on the learning of specific ‘rules’ and patterns, 
as opposed to what human experts do by assigning a ‘meaning’ to data 
which can actively connect one domain of knowledge and learning 
with others through higher-level cognitive architectures, that these 
systems lack. The deep learning approach thus excels in identifying 
trends or optimizing routine processes, but it often fails to account for 
the specificities that arise in complex or novel situations. For example, 
a financial algorithm may efficiently detect fraudulent transactions by 
analyzing patterns across thousands of data points but may struggle 
to account for contextual nuances, such as the socio-economic 
conditions influencing certain behaviors (O'Neil, 2016). Similarly, in 
the healthcare sector, AI tools may accurately flag anomalies in 
diagnostic imaging; however, they often fail to integrate this 

2  Of course, this ‘equivalence’ between AI and human expertise is only partial, 

and contingent to specific contexts (e.g., specific topics or functions, ‘tactical’ 

instead than strategic decisions, ‘hard’ instead than ‘soft’ skills and so on). That 

is in part what the discussion between ‘specific’ AI and ‘general’ AI (AGI) 

(Emmert-Streib, 2024): the long-waited—or feared—promise of AGI is that it 

can substitute human expertise across the whole spectrum, and flexibly through 

different fields or decision-making situations. But all forms of AI, from 

search-aid chat-bots to ‘expert systems’ to enhanced reality to autonomous 

driving- are in some way a form of substituting ‘some’ kind of expertise in 

‘some’ decision-making situation, and one of the main objectives of AI 

development has been indeed to expand the scope and reduce the ‘brittleness’ 

(that is, the lack of flexibility and generalizability) of AI in ever-more complex 

and broader decision-making situations.
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information with patient histories, physician observations, or the 
socio-cultural contexts that influence care—unless explicitly trained 
to do so (Obermeyer and Emanuel, 2016). Even more relevant, in the 
field of artistic creation, AI demonstrates the ability to generate texts 
that give the impression of creativity. However, these outputs often 
lack the deeper contextual awareness and intentionality that has 
historically defined proper human artistic expression.

This emphasis on generalization limits AI’s ability to generate the 
context-sensitive relevance required for effective organizational 
decision-making. Expertise, in contrast, goes beyond merely providing 
answers; it involves identifying the limitations of existing knowledge 
and bridging these gaps through experiential insights. AI’s reliance on 
large-scale datasets creates a dependency fundamentally distinct from 
the contingency-responsive and adaptive qualities inherent in human 
expertise (Stinson and Vlaad, 2024). As discussed in Section III, 
expertise reduces complexity in organizational operations by 
presupposing a relatively stable world and integrating theoretical 
knowledge with practical experience to frame and address relevant 
issues. AI, however, lacks such foundational presuppositions, making 
it highly susceptible to incomplete, biased, or poorly contextualized 
data —a vulnerability that has garnered growing attention (Zou and 
Schiebinger, 2018). As a result, the insights generated by AI risk being 
not only irrelevant but also potentially counterproductive to 
organizational decision-making anytime the decision involves this 
kind of context-specificity, or higher degrees of general expertise as 
compared to domain expertise, undermining its capacity to address 
context-specific challenges and ensure the relevance and effectiveness 
of its actions.

Furthermore, AI’s reliance on external inputs highlights its 
inability to autonomously delineate and prioritize relevance within 
complex organizational environments. This dependency renders AI 
incapable of independently addressing ambiguity or adapting to 
contexts where information is incomplete, conflicting, or fluid, as it is 
increasingly evident in organizational decision-making (Kahneman 
and Klein, 2009). Unlike human expertise, which leverages 
experiential insights and reflection to discern relevance and establish 
priorities, AI systems are entirely constrained by the quality, scope, 
and structure of the data they are provided. This reliance not only 
limits their capacity to make judgments but also prevents them from 
accounting for variables that lie outside predefined parameters, 
reducing their effectiveness in new and unpredictable scenarios. 
Similarly, it also makes them strongly subject to underlying biases in 
the data, something very visible in the different forms of ‘automated 
discrimination’ that AIs inherit from their data (Heinrichs, 2022).

In the temporal dimension, AI clearly surpasses human expertise 
any time a very quick decision needs to be made considering a large 
amount of new information, that humans would not be  able to 
process. But in organizations, expertise is not only a mechanism to 
make quick decisions; rather, and much more importantly, it serves 
to reduce complexity by fostering trust in human judgment, 
particularly in uncertain contexts. Unlike AI, which operates within 
predefined parameters, human expertise is inherently dynamic and 
adaptive, drawing on interpretive processes that integrate past 
experiences with plausible anticipations of the future. This ability to 
contextualize decisions temporally enables expertise to address 
immediate challenges while considering their broader implications 
for future scenarios. By aligning present actions with long-term 
objectives and strategies, expertise equips organizations to confront 

uncertainty with confidence, ensuring that decisions are guided by 
both historical insights and forward-looking perspectives. In contrast, 
AI operates through a logic of sufficiency rather than interpretive 
anticipation. While machine learning systems can adapt by 
incorporating new data, this process is fundamentally reactive, relying 
on existing patterns and inputs. As a result, AI lacks the critical 
proactive capacity to assess emerging or unforeseen conditions 
(Dreyfus and Dreyfus, 2005).

Equally important, trust in expertise is deeply rooted in its 
capacity to justify decisions and respond effectively to unanticipated 
developments. Experts do not merely predict outcomes; they provide 
explanations that frame uncertainty in meaningful ways, fostering 
confidence and enabling contingency planning. In contrast, AI 
systems, while capable of producing statistically robust outputs, often 
lack the interpretive depth necessary to contextualize their 
recommendations. The opacity of many algorithms—the so-called 
“black box” problem (Bathaee, 2018)—further erodes trust by 
concealing the reasoning behind their conclusions. This lack of 
transparency poses significant challenges for organizations, 
particularly in high-stakes contexts where accountability, adaptability, 
and a clear rationale for decisions are critical. Without the ability to 
articulate why a specific course of action is recommended, AI systems 
risk being perceived as unreliable, limiting their utility in contexts 
requiring rather explicit interpretive insights (Ananny and Crawford, 
2018). In this sense, AI systems are somewhat more similar to 
‘intuitive’ expertise, or ‘gut feeling’, which while broadly used in 
decision-making (and arguably, one of the most significant 
components of human expertise) also shares this lack of clear explain 
ability. However, even intuitive expertise can ultimately be explained, 
understood and even predicted (and abundantly subject to 
measurement and testing, see Section 2) based on identifiable sets of 
human characteristics, which makes it possible to anticipate that some 
‘person’ will be likely more expert than another in certain tasks, as well 
as to foster and nurture expertise, both in the education system and 
within organizations. This is not the case with IA: while AI ‘learns’, and 
AIs with more parameters or more data allegedly learn more and 
faster, there are still not clearly defined attributes that can help an 
observer know beforehand which AI will be more expert at what, and 
even, whether all times the same AI will be called -each of this is, in 
some way, a new individual ‘expert’ that learns from the specific 
interaction but cannot be  replicated in future interactions- it will 
always show the same expertise. Steps are being done in this direction, 
and prompt engineering’ may somewhat solve this, but still strongly 
relying on human intervention.

Additionally, the institutional trust-building mechanisms 
underpinning human expertise is fundamentally absent in AI systems. 
Expertise is deeply embedded within professional networks, 
credentialing processes, and institutional frameworks that collectively 
establish its legitimacy and ensure its accountability (Brint, 1994). 
These structures not only validate and update expert knowledge but 
also create mechanisms for holding experts responsible for their 
decisions, thereby fostering confidence in their guidance. AI, by 
contrast, functions as a technical artifact, disconnected from these 
institutional connections, which makes it significantly more 
challenging to perceive its outputs as a reliable foundation for long-
term decision-making. While AI excels at optimizing specific tasks 
within well-defined parameters under quick-answer problem 
situations, its inability to participate in the broader dynamics of social 
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trust highlights a limitation in its capacity to replace human expertise 
in longer-term contexts that require a broader picture (Pasquale, 2015).

In the social dimension, expertise serves not only as a repository 
of specialized knowledge but also as a legitimizing mechanism within 
organizational hierarchies. It gains recognition and validation through 
the distinction between experts and non-experts, creating a structured 
framework for trust, authority, and accountability. This distinction is 
essential for organizational operations, as it facilitates the delegation 
of decision-making and the establishment of clear lines of 
responsibility. AI, however, disrupts this social framework. As a 
non-human system, it lacks the relational and institutional positioning 
that underpins human expertise, making it incapable of occupying the 
role of an “expert” in the traditional sense. While advanced AI systems 
such as ChatGPT can simulate dialogue, offer justifications, and 
respond to challenges to some extent, these interactions remain only 
partially embedded in the social and institutional contexts necessary 
for conferring legitimacy. As noted, legitimacy arises not merely from 
functional outputs but from the social attribution of trust, 
responsibility, and accountability—dimensions that AI is not capable 
of fulfilling autonomously. It therefore continues to function as a tool 
whose outputs require human interpretation and mediation 
(Binns, 2018).

A key issue in this regard is the indeterminacy of AI’s “unmarked 
side.” Expertise relies on clearly defined boundaries between what is 
known and what remains unknown, along with the ability to articulate 
those boundaries transparently. Human experts do not simply provide 
answers; they also inevitably communicate the limitations of their 
knowledge, making the scope and constraints of their expertise 
explicit. In contrast, AI operates without such transparency. The 
already mentioned “black box” nature of many AI systems obscures 
the assumptions underlying their outputs and makes it difficult to 
identify the limits of their knowledge. This opacity disrupts the 
traditional distinction between experts and laypersons, creating 
uncertainty about AI’s appropriate role within organizational 
hierarchies and how its outputs should be evaluated (Ananny and 
Crawford, 2018). That is: AI is both an extremely knowledgeable 
specialist and a stupid advisor.

Moreover, the social dynamics of expertise involve more than the 
validation of knowledge—they also encompass the coordination of 
diverse perspectives within organizations. Human experts play a 
critical role as mediators, integrating insights from various domains 
to facilitate collaboration, alignment, and consensus-building. They 
do so not only by ‘knowing’ (and being expert) at all the domains, but 
even more importantly, engaging in team work, creative collaboration 
and knowledge sharing with other areas. In contrast, AI systems lack 
this capacity. While they can generate highly individualized 
information, AI systems do not engage in the processes that harmonize 
knowledge with organizational objectives or resolve conflicting 
perspectives, limiting their effectiveness in multi-stakeholder 
environments and resulting in less legitimate outcomes (Jarrahi, 2018).

Organizational decision-making in the 
face of sustainability and climate 
change: the promise of AI

Having understood to what extent and with which caveats can AI 
complement or integrate with traditional human expertise in 

organizational decision-making, we now turn to the central question 
of the manuscript: what challenges and opportunities does this imply for 
sustainability and climate change? In particular, how—to which degree 
and in which direction—the expansion and potential hybridization of 
expertise may have an effect on the (organizational) decision-making 
dilemmas related to the attempt to steer and accelerate sustainable 
transitions in our societal, technological and ecological environments? 
In previous works (Billi et al., 2020; Billi et al., 2024a,b), we have 
performed a deep reflection on these dilemmas, using an analytical 
framework very similar to the one we have discussed so far. In these 
reflections, we have employed the term ‘governance’ to refer to the 
whole array of decision-making processes related to sustainable 
transitions, including both decisions that are taken in the domain of 
traditional for-profit and non-for-profit organizations, in the public 
arena (by State and public organizations, as well as political 
institutions) and in the different emerging realms of network-like 
quasi-organizations that often populate the field of sustainability. This 
implies broadening the scope of analysis to a broader meaning of 
organization and decision-making, which however can learn a lot 
from all that has been studied in terms of expertise, and its relationship 
with AI, in the narrower setting of conventional organizations.

In these studies, we have argued that decision-making related to 
sustainability transitions and climate change mitigation or adaptation, 
and thus expertise related to said decisions, is fundamentally faced 
with three dilemmas, each of which implies a specific ‘tension’ that 
decisions and expertise need to navigate, related to the same three 
dimensions discussed above: factually, in terms of the tension between 
the universality and specificity of the problem and knowledge on 
which decisions need to be made; temporally, the tension between 
long-term and short-term horizons of decision, and related to this, 
between the continuity of drive between decisions taken at different 
times and the need to adjust to changing circumstances; and socially, 
the tension between the coordination of decisions taken by different 
actors, and thus, also the possibility of some actors of restricting or 
steering decisions of others, and the need to maintain a degree of 
agency and autonomy of each individual decision maker (and thus, 
take advantage of their specific expertise).

In particular, our claim was that the quest for sustainability 
transitions applies an increasing pressure on both sides of the 
spectrum of each of these decision-making tensions, and thus the 
problem of governance (but also of expertise) becomes how to balance 
between them in these growingly complex conditions. This is, for 
many, one of the core issues that requires facing in order to face 
problems related to climate change -and sustainability more broadly: 
linear, structured, problem-solving thinking is not enough to fathom 
-let alone solve them. In fact, it can often lead to worsening them or 
creating new ones (Gupta, 2016; Lazarus, 2008; Voss et al., 2006). And 
it is also why, while the COVID-19 pandemics, despite its tragedy and 
impact, could be mostly ‘solved’ in less than 2 years, while climate 
change has still no clear ‘solution’ in sight despite knowledge of it 
having been around for more than a century, and counting (Billi 
et al., 2024b).

In the factual dimension, decisions regarding just transition 
oriented to sustainability and climate change require specificity 
because they relate to multiple and different domains, systems, scales, 
each implying its own kind of expertise. For instance, a transition in 
the ‘energy system’ requires to consider economical, technical, 
ecological, socio-cultural, legal and political factors, as they accrue as 
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much at the global level, as at the national and subnational ones 
(Klein, 2020; Saruchera, 2025). No single set of decisions will be the 
best one to push forward transitions across all these contexts, different 
variables and knowledges need to be  balanced, and this deeply 
challenges the cognitive limitations of human experts, which tend to 
have a limited grasp of the knowledge required in each of these 
domains, and are likely expert at most in a subset of them.

However, at the same time, these decisions need also to be able to 
transcend their contexts, because of the high interdependence of 
actions taken in each domain and scale: impacts on one sector can 
generate chain effects on others; measures that respond to current 
challenges at some scale could generate counterproductive 
consequences in other scales and actions that are appropriate for a 
certain group or sector may be negative for others. Even improved as 
it is, AI remains too brittle to be  able to deeply tackle these 
interdependencies, and it lacks access to a meaning-making 
mechanism that can allow it to interpret and understand how these 
different decisions may interact with each other in different contexts. 
However, it can provide a vast access to data and knowledge which can 
help human experts to make sense of this complexity. Here, a 
hybridization of human (both intuitive and rational) general and 
context-sensitive expertise and artificial domain-specific expertise 
could be beneficial in that it may be able to expand the cognitive span 
of decision-making systems beyond the traditional limitations and 
thus capture as much domain knowledge as needed while also 
retaining the ability to read between domains, much similar to the 
hope that was once upon a time invested in the development of ‘expert 
systems’. However, for that to happen, the human expert should 
remain in charge and at the drive, resisting the temptation of taking 
for granted patterns and suggestions made by AI systems, and instead 
guiding the search for new and more reflexive ways of understanding 
the complexity and making connections. In this framework, AI should 
primarily serve as a tool and an assistant to human expertise, 
augmenting rather than replacing the interpretive strengths of human 
decision-makers.

In the temporal dimension, decisions regarding just transitions 
imply a high degree of anticipation, long-term perspective and 
tolerance to uncertainty. Not only sustainability and climate change 
imply slow-moving variables, so that their causes and effects require 
to take into account decades- and often centuries-long timeframes. 
But also, transitions required to tackle them may require decades to 
happen, needs to nidify strategies into strategies and anticipate future 
scenarios which are unclear in their probability and even in the 
assumptions that are made to create them (sometimes referred to as 
‘deep uncertainty’ Haas et al., 2023). Even more crucially, transitions 
are ill-structured problem situations, or “wicked problems” as they 
tend to often be called (Termeer et al., 2015) -or even “super-wicked,” 
in the case of climate change (Gilligan and Vandenbergh, 2020). AI is 
not well equipped to deal with these kinds of problems, and truth 
be  said, not all humans are. In fact, it is often implied that these 
problems require reframing our way of thinking, deepening our 
critical reflexivity, inter and transdisciplinary attitude and advancing 
new form of collaboration and leadership (Earle and Leyva-de la Hiz, 
2021). Expertise, particularly adaptive expertise, must then 
be  nurtured to face these problems, requiring not only human 
decisions, but decisions that are trained and sensitivities to open up to 
these new forms of thinking. But at the same time, just transitions also 
require short-term decisions, and in fact, it requires to quicken and 

multiply decision-making power to be able to adjust almost in real 
time to changing scenarios and conditions, in a way and pace which 
humans cannot readily adopt. For instance, optimizing energy 
efficiency, or water use, or organizing circular economy structures and 
so on, requires very fast and broad-spanning decisions on multiple 
contexts and places at once. This does not necessarily require long-
term thinking, but rather rapid data processing and memory, qualities 
in which AI systems excel (Haider et al., 2024; Zejjari and Benhayoun, 
2024). So in the temporal dimension, hybridization should take at the 
same time the role of human expertise enhancement through AI, 
providing scenarios, data exploration and management tools to foster 
future-thinking, and replacing of humans by AI in routinary, quick-
thinking tasks but with the possibility of overriding these when 
intuitive expertise tells otherwise.

Finally, in the social dimension, sustainability and climate change 
problems face not only a multiplicity of decision-makers, as they often 
require actions to be taken in a coherent and collaborative manners 
between public institutions, private enterprises, community members 
and so on, but also inherent and sometimes unsurpassable trade-offs, 
‘hard choices’, contrasting values and worldviews, and no-size-fits-
it-all solutions, that make all decision-making situation in this context 
inherently controversial and open-ended (O'Brien et  al., 2009; 
Sapiains et al., 2020). Thus, the problem is how to include multiple 
perspectives, so that decisions not only make sense but also ensure 
their legitimacy and ownership by these different groups, while at the 
same time allowing that actors are able to coordinate and act in a 
timely and relatively orderly manner, in the face of joint problems and 
(limited) common resources.

In this context, AI is not up to the task, not alone at least. 
Replacing human decisions for AI systems may seem an attractive way 
out to some, removing the alleged ‘bias’ of human decisions to specific 
factions or worldviews, but what it ultimately does, is promoting a 
cold, context- and socially-insensitive form of technocracy. As 
discussed above, while AI does exude some sense of authority or 
legitimacy because of its perceived ‘objectivity’, this does not apply in 
overtly conflicted situations in which attention to subjectivity and 
controversies is fundamental for decisions to be considered legitimate. 
Moreover, as also discussed above, excessive trust on the objectivity of 
AI may also be misguided, as AI systems ultimately take in the inputs 
that they receive and derive patterns from them, without any ability to 
identify potential biases or discriminations that these may hide (either 
unintentionally or deliberately). On the other hand, AI systems can 
have a role here in expanding the accessibility of knowledge and 
expertise. As also discussed in the factual dimension, in complex 
problem-situations, not everybody can have access to all the 
knowledge needed to make a decision, and particularly, most people 
will probably have no training on most of the technical aspects of a 
decision, making human-only approach prone either to technocratic 
exclusion, or to populist rhetoric, e.g., oversimplifying myths and 
post-truths. In fact, even after decades of scientific and political work 
over this, many people still do not get a deep understanding of 
sustainability and climate change processes, and climate skepticism 
remains rampant (Dunlap, 2013). AI can here help by translating and 
making rapidly accessible deeper forms of knowledge to people that 
go beyond their individual sphere of expertise, so they can engage in 
more productive and informed dialogue and deliberation with their 
peers. However, this would require incorporating more explicitly 
training in use of AI -and also, in critical appraisal of AI ‘truths’ into 
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both higher education and adult specialization curricula, which would 
also help in shifting capacities required to support inclusive and just 
transition processes.

Conclusion

This paper examined the opportunities and challenges of AI in 
shaping a just transition to sustainability, particularly regarding its role 
as a partial alternative to human expertise within organizations. 
We  have argued that expertise functions as a key mechanism for 
reducing complexity in decision-making, defining problems and 
solutions, adapting to change, and legitimizing decisions. AI, while 
useful in processing data, identifying patterns, and facilitating 
accessibility, cannot fully replace human expertise due to technical 
and social plausibility limitations. Effective AI integration requires 
developing new forms of collaboration between AI and human 
decision-makers—ranging from assistance to hybridization and 
supervised substitution—while simultaneously advancing human 
expertise to address the growing complexities of the world and 
support just transitions.

As discussed in the previous section, hybridization is required to 
respond to the growing complexity, rapidity, uncertainty and 
policontextuality of decision-making challenges, which becomes even 
more relevant in the frame of super-wicked problems such as climate 
change and other sustainability issues. Combining human and IA 
expertise would bring in this case not only a way of fostering the 
compatibility between human and AI expertise in organization, but also 
ways to harness this in the context of the green transition and adaptation 
strategies required by climate change and other sustainability issues.

However, as already noted, hybridization between human and 
artificial intelligence can take multiple forms—ranging from context-
dependent procedures such as the interactive division of tasks, to 
AI-enhanced access to information, delegation of routine 
responsibilities, and more integrated workflows that enable the 
co-construction of knowledge and joint task execution. These models 
vary in their effectiveness and feasibility across different settings, 
highlighting the need for further research into the specific forms of 
hybridization most conducive to promoting just and sustainable 
transitions. Crucially, all such approaches require a rethinking of how 
current and future workforces are trained. This is particularly pressing 
in the context of green transitions, where occupational reorientation 
toward climate-compatible roles is rapidly becoming a central 
challenge. While our analysis highlights the limitations of AI in 
replicating the social and interpretive dimensions of human expertise, 
we  also acknowledge that in certain well-structured, high-volume 
decision environments, AI systems may achieve a degree of autonomy 
or functional legitimacy—especially when supported by robust 
validation procedures, transparency protocols, and effective human 
oversight. Future research should critically investigate these scenarios 
to understand the institutional, technical, and social conditions under 
which AI might reliably assume roles traditionally reserved for human 
experts, without compromising trust, accountability, or ethical integrity.

Similarly, future research should explore how different 
organizations incorporate AI to advance just transitions, particularly 
in human-centric fields like education and healthcare, where ethical 
judgment and empathy remain irreplaceable. Another critical issue 
is trust—AI adoption depends not only on technical proficiency but 

also on its perceived legitimacy. Skepticism persists, warranting 
further study on whether it stems from AI’s limitations, its perceived 
inferiority to human expertise, or broader societal concerns. 
Additionally, the power dynamics of AI implementation must 
be further examined, as AI can either reinforce hierarchical structures 
or democratize access to expertise, impacting equity and justice in 
sustainability transitions.

The discourse on AI is often steeped in grand expectations or 
dramatic concerns, where lofty aspirations and dystopian fears 
outpace reality. Organizations stand at the crossroads of these 
ambitions, translating ideals into practice of day-to-day work and 
workforce management. In this context, however, insufficient attention 
has been put so far on the role, opportunities and challenges that the 
incorporation of AI-assisted decision and the hybridization of human 
and AI expertise can have on fostering more grounded and informed 
decisions in the context of complex, (super-)wicked problems such as 
climate change and sustainability. This study moves beyond promises, 
anchoring the conversation in functionality and plausibility—what AI 
can truly offer, rather than what it merely envisions. In this pursuit, 
innovation alone is not enough; a deeper understanding of the social, 
cultural, and political landscapes in which AI unfolds is essential. 
Only by acknowledging these complexities can AI’s role in 
sustainability and climate change transcend rhetoric and become a 
force for meaningful transformation.

To advance in this direction, it is essential to foster 
interdisciplinary collaboration among computer scientists, 
organizational theorists, and sustainability scholars to develop 
context-sensitive frameworks for human–AI interaction. Practical 
experimentation through pilot initiatives—particularly in sectors 
such as urban planning, renewable energy, and climate governance—
holds particular promise and can yield valuable insights into how 
hybrid systems function in real-world decision-making environments. 
In parallel, policy-oriented research should examine the regulatory, 
institutional, and normative infrastructures needed to ensure that AI 
implementation is consistent with democratic values, social inclusion, 
and environmental priorities. Addressing these challenges requires 
more than technical innovation; it demands a fundamental 
transformation in professional cultures, organizational learning, 
higher education, and accountability frameworks. Only through such 
integrated and reflexive efforts can AI serve as a meaningful 
contributor to just, sustainable and climate-neutral transitions.
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