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Abstract

Artificial Intelligence (Al) could revolutionize our ability to understand and address climate change. Studies to date
have focused on specific Al applications to climate science, technologies, and policy. Yet despite the vast demonstrated
potential for Al to change the way in which climate research is conducted, no study has presented a systematic and com-
prehensive understanding of the way in which Al is intersecting with climate research around the world. Using a novel
merged corpus of scholarly literature which contains millions of unique scholarly documents in multiple languages, we
review the community of knowledge at the intersection of climate change and Al to understand how Al methods are
being applied to climate-related research and which countries are leading in this area. We find that Chinese research
institutions lead the world in publishing and funding research at the intersection of climate and Al, followed by the
United States. In mapping the specific Al tasks or methods being applied to specific climate research fields, we highlight
gaps and identify opportunities to expand the use of Al in climate research. This paper can therefore greatly improve
our understanding of both the current use and the potential use of Al for climate research.

Keywords Al - Climate change - China - Al tasks and methods - Publication analysis

1 Background

Artificial Intelligence (Al) could revolutionize our ability to understand and address climate change. Al tasks and meth-
ods can increase the speed of problem solving with applications for better understanding the causes of climate change,
responding to its impacts, and formulating solutions [1, 6, 11].

Today, scholars have begun to analyze the potential role that Al could play in addressing global climate change,
both through improving our scientific understanding of the causes and impacts of climate change and by helping to
develop solutions [22, 57]. We are increasingly seeing examples of how Al and machine learning can be used to improve
the accuracy of climate system modeling [5], fill time series data gaps [26], estimate emissions inventories [20], refine
climate scenario projections [44] and climate impact assessments [12], as well as develop applications for low carbon
technology deployment through power, transportation and building system optimization [7, 8].

Multiple studies have shown that that Al simulations and machine learning are being integrated into weather and
climate modeling, including emulating and forecasting weather patterns and climate processes with greater consistency,
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data efficiency, and improved generalization [28, 32, 36, 54, 55]. Al is used in in flood risk modeling frameworks to increase
the performance and accuracy of prediction methods [43, 46, 61]. Using neural networks for weather and climate mod-
eling has improved agriculture and crop yield predictions under a range of climate scenarios, and machine learning
algorithms have been applied in areas such as monitoring soil quality, managing crops, and modeling evapotranspira-
tion, rainfall, drought, and pest outbreaks [15, 50, 60].

Al algorithms are increasingly being used for improving the efficient management of natural resources. For example,
combining deep learning with statistical techniques could create more useful assessments of the impact of deforestation
on rising carbon emissions in metropolitan areas [34]. In addition, machine learning approaches are being applied in
developing low carbon materials [19]; for example the application of machine learning in optimizing concrete and steel
production have demonstrated how Al can be integrated into supply chain modeling for heavy industries [24, 39, 51]. Al
frameworks have been applied to minimize water consumption and emissions from oil and gas reservoirs, while other
research has demonstrated methods using machine learning in assessing the carbon footprint of buildings [13, 16, 29, 471.

Many studies have used Al methods in renewable energy research and demonstrated the broadening number of
use cases for integrating Al into renewable energy systems. Al techniques are becoming a key tool in deploying data-
integrated renewable energy networks [2, 4, 23, 37]; estimating and forecasting solar radiation resources [17, 30, 31, 38]
and wind energy resources; [18, 25, 63] as well as in micro-grid management [27, 42, 58].

Additionally, Al has been shown to be a powerful tool to assess and develop carbon markets and generate more
accurate carbon price models, including dynamic carbon pricing mechanisms [3], and more robust comparison models
for carbon price forecasting [56]. Such methods have been applied to studies of emissions trading schemes including
in China [35] and the UK [45].

While we have a sense of the general scope of climate change research being undertaken [21, 49, 52, 62], and studies
have previously laid out the potential for Al to improve climate research and enable the achievement of global sustainable
development goals [48, 53], no studies to date have taken a systematic and comprehensive approach to characterizing
the way in which Al is intersecting with climate change research at a large scale, despite the vast demonstrated potential
for Al to change the way in which climate research is conducted.

In this paper we map the community of knowledge at the intersection of climate change and Al to review how Al
methods are being applied to climate related research, and which countries are leading in the application of Al to climate
research. In mapping the specific Al tasks or methods being applied to specific climate research fields, we highlight gaps
and identify opportunities to expand the use of Al in climate-related research.

Our analysis is based on a novel merged corpus of scholarly literature which contains millions of unique scholarly
documents in multiple languages, and associated research clusters which are organized into a Map of Science. This is
the first such study of the application of Al tasks and methods to climate change research using such a comprehensive
data set. This paper can therefore greatly improve our understanding of both the current use and the potential use of
Al for climate research.

2 Methods

In order to map the community of knowledge at the intersection of climate change and Al, we use a novel merged
corpus of global scholarly literature, including Digital Science’s Dimensions, Clarivate’s Web of Science, Microsoft Aca-
demic Graph, China National Knowledge Infrastructure, arXiv, and Papers with Code, with CSET’s Map of Science. This
dataset allows for a far more comprehensive review than most traditional bibliometric analyses. In addition, it includes
more than 120,000 research clusters derived from citation relationships within the merged corpus. Research clusters
are groupings of scholarly documents based on citation links, not on topic similarity or author networks; thus, research
clusters are groupings of scientific publications that address similar research questions. Each research cluster includes a

' China National Knowledge Infrastructure is furnished for use in the United States by East View Information Services, Minneapolis, MN,
USA. Dimensions is provided by Digital Science, Web of Science is provided by Clarivate Analytics, and China National Knowledge Infrastruc-
ture is furnished for use in the United States by East View Information Services, Minneapolis, MN, USA.
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Fig. 1 Data Collection Pipeline using CSET’s Merged Corpus and Map of Science

Table 1 Regular expression search terms used to generate R ;41

English Chinese SQL
climate change,"“climate changes,” “cli- SET, SixT5T REGEXP_CONTAINS(str, r"(?i)((\bclimat.* change.*\b)| (S &%
matic change!” and “climatic changes” OIS 1EZLIEN)
global warming ZIREL, REGEXP_CONTAINS(str, r"(?i)((\bglobal warming\b)|(ZIkBZ1Y)|(
ZRHE 2SR TER ZHHR)|( @ISR TIR)"
carbon emissions 72E i) REGEXP_CONTAINS(str, r"(?i)((\bcarbon emission.*\b)| (B HEAX))")
low carbon 1Kz REGEXP_CONTAINS(str, r"(?i)((\blow carbon\b)|(1Ekiz))")

set of research publications and aggregated metadata generated from the member publications, such as, key areas of
research (fields and topics), key researchers in the field, and key funders.?

We perform our analysis by identifying climate change related research papers via a keyword search, linking the
publications to their research clusters, and then analyzing research clusters of interest. Figure 1 illustrates our data col-
lection pipeline, starting with a set of keyword publications and ending with a set of research clusters and their member
publications. Each dot in the map of science represents a research cluster and is colored by its broad area of research.

This scientific research data pipeline enables us to find research clusters of interest by locating research publications in
the Map of Science. We can then look at a subset of research clusters and analyze aggregate statistics from their member
papers. This approach to identifying scientific research of interest requires a seed set of publications. We generated a
scientific research corpus of climate change literature (R,j;,q:) USing a regular expression search. We generated a scientific
research corpus of climate change literature using a regular expression search in English and Chinese, including terms
for climate change, global warming, carbon emissions and low carbon (Table N32Ifa publication contains one of the
terms in its title or abstract it is included in our climate change publication set.

We ran a search through the CSET merged corpus using the terms generated above; publications were selected as
being related to climate change research if their title or abstract contained at least one keyword. We based these key-
words on other studies that have conducted bibliometric analysis [21]. This search resulted in 947,616 climate change-
related publications, which we refer to as R,j;,.- We select RCs that contain at least one of these climate change publica-
tions, which results in 46,703 research clusters.

For each research cluster selected in this initial cluster search, we computed the percentage of papers that are con-
tained in R ;4 OUt Of the total number of papers in the RC. This allows us to sort and filter these resulting RCs based on
the concentration of climate change-related papers. Our research cluster analysis for climate research includes 413,303
publications pulled from the 95th percentile of climate focused literature in our dataset which linked to 2,351 research
clusters that have five percent or more R;,4; PUblications [33].

Our final filtering was through an identification of clusters with high percentages of Al-related publications. We use the
Al percentage from the Map of Science, which identifies the concentration of Al-related publications in a given cluster.
Al relatedness in English language publications were classified using a model trained on arXiv publications [14], and

2 The data for this study was extracted on April 21, 2022. The latest version of the full database is available at https://sciencemap.eto.tech/?
mode=map.

3 Most non-English language publications translate the abstract into English so this search will include a range of non-English language
publications. The most frequent exception to this is Chinese-language publications which is why we also include Chinese-language search
terms.
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Fig.2 Climate Change and Climate Change Al Research Clusters Highlighted in the Map of Science
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Fig. 3 Comparison of Climate and Climate + Al Research Clusters by Discipline

Chinese-language publications were classified using a regular expression query [10]. Thus, similarly to how we filter for
climate change-related RCs, we can filter for Al-related RCs.

This allowed us to sort our dataset both by climate and Al relevance. We did this by looking at the clusters in both the
95th percentile of climate research and the 95th percentile of Al research. By selecting research clusters that have both
95% or more concentrations of climate change related publications and Al-related publications we identify 111 research
clusters to analyze from the starting set of 2,351 climate change clusters.

Figure 2 displays the full Map of Science and the two subsets (climate change and climate change and Al) of research
clusters we identify highlighted within it.

In the synthesis section we discuss further methods that were used to analyze and synthesize the dataset described
above. This includes extracting 67 clusters that have either China, or the U.S. listed as the top country and have on average
more than 2 citations per paper to filter for clusters with community engagement, and an examination of the leading Al
and climate change tasks and methods by cluster at the individual publication level as described in Sects. 3.2 and 3.3.

3 Synthesis
3.1 Characterizing the climate change and Al research landscape

In order to contextualize the landscape of climate change and Al research, we compare the general research fields and
countries of publication for each research cluster set. Each research cluster is assigned a broad discipline from the follow-
ing list: Biology, Chemistry, Computer Science, Earth Science, Engineering, Humanities, Materials Science, Mathematics,
Medicine, Physics, and Social Science. This discipline assignment represents the majority of member papers in a given
research cluster and does not indicate that every member paper falls unambiguously under this area. Figure 3 displays
the percentages of climate change related research clusters by their general discipline (displaying discipline areas that
have at least a 1% share of publications).
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Fig.4 Comparison of Climate and Climate and Al Research Clusters by Top Country

The climate research cluster set is comprised of 50% earth science publications and 43% social science publications,
and includes materials science, engineering and biology publications. In contrast, the climate and Al dataset is comprised
of 54% earth science and 41% social science publications, along with some engineering, computer science and materials
science publications. While there is not a huge difference in fields between climate research and climate and Al research,
biology drops off and is replaced by computer science in the second category as a leading field.

Articles at the intersection of climate and Al research include multiple disciplines from both the natural and social
sciences. While the earth sciences dominate the research clusters identified, this is very closely followed by the social
sciences. It is somewhat surprising that engineering and computer science do not show up in greater percentages in
this area, likely because most climate related research is in fact not being done in these fields, but rather the models and
techniques are being applied by climate researchers in their respective fields. A potential limitation of these categoriza-
tions however is that much of this work is interdisciplinary and may in fact span the natural and social sciences.

3.2 Leading countries, institutions and funders

Each research publication is assigned country data using the location of the organization that an author is affiliated with.
This means that if there are multiple authors from different countries, a given publication will have multiple countries
assigned. For all member publications in a given research cluster, a “top country” categorization is assigned based on
the country being listed on the most publications in that research cluster. We treat all EU-27 countries as one entity due
to their high rates of collaboration and research funding allocation. Figure 4 displays the top five leading countries by
research cluster count.

We find that China produced more research in our climate research clusters and climate and Al research clusters, with
U.S. authors producing the second highest number of research in both sets. It is perhaps not surprising given China’s role
in climate change research shown here, and its strong role in Al research [41]. Yet China has a more sizable publication
output lead in climate research generally than in climate and Al research. The other countries that produce significant
climate and Al research outputs differ from those that produce more climate research generally. The EU-27, UK, and India
follow China and the United States in climate research generally, while India, the EU-27, and South Korea follow China
and the United States in research on climate and Al. It is worth noting that if results were adjusted by factors such as
population size or other measures of capacity, the analysis would yield different results.

Due to the publication output lead that China and the U.S. hold, we further refine our set of 111 climate change and Al
research cluster to the 67 clusters that have either China or the U.S. listed as the top country and have on average more
than 2 citations per paper to filter for clusters with community engagement [33]. This allows us to examine a variety of
relevant variables including: (1) leading countries of author affiliation; (2) leading research fields; (3) leading author affili-
ations; (4) leading funding organizations; (5) leading industry affiliations; and (6) Al-related tasks and methods; thereby
facilitating a more granular analysis of the research landscape at the intersection of climate and Al.

In order to identify research institutes with the highest global publication output at the intersection of climate and Al,
we examine the research institutes that the study authors are associated with.* The top 10 institutes are listed in Table 2.

* Here, we shift our analysis here to the member publications of the research clusters, thus Tables 2-4 are counts of publications as opposed
to research clusters.
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Table 2 Top 10 publishers of

. Organzation Country Number of
research on climate and Al Publica-
tions
Chinese Academy of Sciences China 1359
Beijing Normal University China 228
University of Maryland, College Park USA 191
Wuhan University China 186
Wageningen University & Research Netherlands 174
United States Geological Survey USA 171
Tsinghua University China 152
University of Wisconsin-Madison USA 139
United States Forest Service USA 138
University of New South Wales Australia 135
Table; Top 10fupders Organization Country Number of
assoqatgd with climate and Al publica-
publications tions
National Natural Science Foundation of China China 4391
Ministry of Science and Technology of the People’s Republic of China China 1938
National Science Foundation (US) USA 1527
European Commission EU 998
Chinese Academy of Sciences China 710
National Aeronautics & Space Administration (NASA) USA 676
Ministry of Education of the People’s Republic of China China 367
Brazilian Federal Agency for Support and Evaluation of Graduate Education Brazil 319
United States Geological Survey USA 307
United States Department of Energy USA 248

As China is the leading country by author affiliation as presented above, we see that many research institutes pub-
lishing at the intersection of climate and Al research are based in China. The Chinese Academy of Sciences, the largest
research institute in China, is by far the dominant research institute where research at the intersection of climate and
Al is being conducted. Within the Chinese Academy of Sciences (CAS), the leading research institute associated with
climate change and Al publications in our database is University of the Chinese Academy of Sciences (438 publications),
followed by the Institute of Geographic Sciences and Natural Resources (277 publications), and the Institute of Remote
Sensing and Digital Earth (246 publications). Other leading Chinese research institutes include Beijing Normal University,
Wuhan University, and Tsinghua University.

Within the United States, the University of Maryland, College Park has the largest number of publications in our cli-
mate and Al dataset, followed by the United States Geological Survey, University of Wisconsin-Madison, and the United
States Forest Service. The two other countries with research institutes that show up in the top ten are the Netherlands
and Australia.

We examine the observable leading funding organizations associated with climate and Al publications and find that
China-based funding organizations have supported research that contributed to the largest number of publications,
including the National Natural Science Foundation of China (4,391 publications) and China’s Ministry of Science and
Technology (1,938 publications) in the first and second position. In third place is the United States National Science
Foundation (1,527 publications), followed by the European Commission (998 publications) and the Chinese Academy
of Sciences (710) which not only conducts but also funds research. The top ten funders are listed in Table 3.

While no private companies appear as leading research institutes or funders, we took a closer look to determine
which companies are the most associated with climate and Al publications in our database. The top five companies
that appear in our database in either a funding capacity or research affiliation are Google based in the United States (62
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Table 4 Top producers within the Chinese Academy of Sciences of Climate/Al publications

Name of CAS Research Institute Number of Publications ~ Website

University of the Chinese Academy of Sciences 438 https://english.ucas.ac.cn
Institute of Geographic Sciences and Natural Resources Research 277 http://english.igsnrr.cas.cn
Institute of Remote Sensing and Digital Earth 246 http://english.radi.cas.cn
Aerospace Information Research Institute 53 http://english.aircas.ac.cn
Northeast Institute of Geography and Agroecology 34 http://english.neigaehrb.cas.cn
Northwest Institute of Eco-Environment and Resources 28 http://english.nieer.cas.cn
Institute of Soil Science 25 http://english.issas.cas.cn
Institute of Tibetan Plateau Research 18 http://english.itpcas.cas.cn
Nanjing Institute of Geography and Limnology 13 http://english.niglas.cas.cn
Institute of Atmospheric Physics 1 http://english.iap.cas.cn

publications), Science Systems and Applications based in the United States (30 publications), State Grid Corporation
based in China (30 publications),5 IBM based in the United States (22 publications), and Volkswagen Group based in
Germany (15 publications).

The Chinese Academy of Sciences (CAS) is listed in Table 2 as being associated with the largest number of publica-
tions at the intersection of climate and Al by far. However, CAS is a large organization comprised of multiple research
institutes distributed throughout the country. As a result, we took a closer look at the specific research institutes within
CAS to better understand their contributions to research in this area. We found that the University of Chinese Academy
of Sciences is the source of the highest number of publications, followed by the Institute of Geographic Sciences and
Natural Resources Research, and the Institute of Remote Sensing and Digital Earth as listed in Table 4.

The names of the CAS institutes give some indication of the type of research where Al is being applied to climate
research, including in the areas of geographic sciences and remote sensing. More detail is available at the websites
provided in Table 4.

3.3 Al tasks and methods used in climate research fields

To better understand exactly how Al is being utilized within climate research, we examined the Al-related tasks and
methods that are automatically assigned to individual research publications in our database using a named entity
recognition model trained on tasks and methods as developed in [59]. Each task and method label falls under several
broad areas, such as “natural language processing” or “causal inference.” For our analysis, we aggregated the tasks and
methods that appeared in member publications of our 67 research clusters of interest. For each RC, we looked at the top
five most frequent tasks and methods from the research clusters’member publications and represented them in nine
distinct categorizations from the “Papers with Code” taxonomy: causal inference, computer vision, graphs, methodology,
natural language processing, neural networks, reinforcement learning, robots, and time series [40].

Next, we manually verified nine climate-related categorization labels based on the occurrence of keywords in the
research cluster metadata: climate impacts, climate modeling, emission trends, energy efficiency, energy technology,
energy trends, land use change, public perception, and transportation, based in part on the categories used in [48]. We
then identified all distinct pairings between the nine Al-related tasks and methods and the nine climate-related catego-
ries. For example, if a research cluster had both climate modeling and neural networks labels, that would be represented
in Table 5 by a checkmark.®

In Table 5 we see a wide range of Al tasks and methods being applied to the 9 climate research areas that we extract
from our climate and Al RC dataset. For example, we identify six Al tasks and methods being used in studies of climate
impacts, including causal interference, computer vision, natural language processing, neural networks, robots and time

5 The State Grid Corporation of China is technically a state-owned as opposed to a purely privately held company.
5 In this way, Table 5 denotes the Al-related tasks and methods that have been applied to climate-related areas but does not represent the
frequency of these pairings.
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Table 5 Mapping Al Tasks and Methods within Climate Change Research Subfields

Causal Com- Graphs Methodology Natural Lan- Neural Reinforce- Robots  Time Series
Interfer- puter guage Process- Networks ment Learn-
ence Vision ing ing
Climate Impacts v v v v v v
Climate Modeling v v v v v
Emissions Trends v v v
Energy Efficiency v v v
Energy Technologies v v v v
Energy Trends v
Land Use Change v v v
Public Perception v
Transportation v v

series. Studies involving climate modeling are using at least five Al tasks and methods including computer vision, graphs,
neural networks, robots and time series.

This analysis also reveals some areas of climate research that are using fewer Al tasks and methods. While energy
technologies research is using multiple methods (examples include computer vision, Al methodology, natural language
processing, and reinforcement learning), we see other areas of energy research such as energy trends studies and public
perception studies using fewer methods. As a result, there appear to be gaps in certain climate research areas where
Al tasks and methods are not being used as widely and where there may be useful applications. Exploring these gaps
identified in Table 5 is an area for future research.

4 Discussion and conclusions

Given the vast potential of Al tasks and methods to revolutionize all aspects of research and analysis, it is not surprising
that they are being applied to one of today’s most pressing global challenges, addressing climate change. Our study
contributes to the understanding of how Al is being used in climate related research with three key findings.

First, we find that articles at the intersection of climate and Al research include multiple disciplines from both the
natural and social sciences. While the earth sciences dominate the research clusters identified, this is very closely fol-
lowed by the social sciences. It is somewhat surprising that engineering and computer science do not show up in greater
percentages in this area, likely because most climate related research is in fact not being done in these fields. A potential
limitation of these categorizations however is that much of this work is interdisciplinary and may in fact span the natural
and social sciences.

Second, we find that Chinese research institutions lead the world in publishing and funding research at the intersec-
tion of climate and Al, followed by the United States. In examining the research institutes that the study authors are
associated with, we find that just as China is the leading country by author affiliation as presented above, many of leading
research institutes at the intersection of climate and Al research are based in China. The Chinese Academy of Sciences,
the largest research institute in China, is by far the dominant research institute where research at the intersection of
climate and Al is being conducted. We also find that the leading funders associated with climate and Al publications are
also based in China: The National Natural Science Foundation of China and China’s Ministry of Science and Technology.
China’s dominance in Al applications has been well documented, and we show that China also leads the world in climate
released research, as well as at the climate-Al interface. This is also reflected in Chinese government policy; for example,
the Chinese government has issued explicit guidance on the use of Al in climate research in the “Meteorological Science
and Technology Development Plan (2021-2035)"issued by the Ministry of Science and Technology and Chinese Academy
of Sciences in March 2022 [9].

Third, by mapping the specific Al tasks or methods being applied to specific climate research fields, we find gaps and
identify opportunities to expand the use of Al in climate research. While we believe this is the first study to examine this
in a systematic way, we acknowledge some deficiencies in our methods, namely that we manually identified subfields in
climate research using some keyword analysis as well as some subjective judgement, and that our pairing of Al-related
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tasks and methods to climate-related research areas represents the occurrence but not the frequency of these pairings.
However, our findings raise multipole questions that present opportunities for future research and inquiry, including why
certain tasks and methods are being used in specific fields, and what other fields might learn from applications to date.

Of course, any effort to make broad generalizations about fields as vast and complex as the fields of climate change
and Al comes with some limitations. There are likely applications of Al to climate research that are not included here
due to limitations in our original search terms or in the way in which we develop climate subfields in order to map them
against Al tasks and methods. These are rapidly involving fields of research in which new methods and applications are
being developed all the time. Furthermore, the field of research at the intersection of Al and climate change is growing
very rapidly, so any attempt to assess the state of the field could be quickly outdated.

Yet given the tremendous opportunity that emerging Al tools provide in addressing a challenge so vast and multi-
faceted as climate change, the study of their application is no doubt of tremendous academic and practical importance.
This paper allows for a more globally comprehensive and nuanced analysis of this relationship than past studies and
consequently provides a tangible contribution to our broader understanding of the use of Al tasks and methods in
climate change research.

This study also examines the role of specific countries and specific funding organizations in shaping the direction of
climate and Al research which will be increasingly important to understand. Furthermore, tensions between China and
the West are already shaping national decisions about investments in Al research and could influence future research
directions.

Given the very limited time remaining to avoid even more dangerous impacts of climate change globally, the expanded
use of Al tasks and methods presents the opportunity to transform our ability to understand and address climate change.
This paper helps to identify opportunities to expand the use of Al tasks and methods in climate related research, and
the predominance of China and the United States in this area raises important questions about national leadership and
competitiveness.
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ABSTRACT

This article explores the transformative role of artificial intelligence and machine learning in tackling climate
change. It highlights how advanced computational techniques enhance our understanding and response
to environmental shifts. Machine learning algorithms process vast climate datasets, revealing patterns
that traditional methods might overlook. Deep learning neural networks, particularly effective in climate
research, analyze satellite imagery, climate sensor data, and environmental indicators with unprecedented
accuracy. Key applications include predictive modeling of climate change impacts. Using convolutional and
recurrent neural networks, researchers generate high-resolution projections of temperature rises, sea-level
changes, and extreme weather events with remarkable precision. Al also plays a vital role in data integration,
synthesizing satellite observations, ground-based measurements, and historical records to create more
reliable climate models. Additionally, deep learning algorithms enable real-time environmental monitoring,
tracking changes like deforestation, ice cap melting, and ecosystem shifts. The article also highlights Al-
powered optimization models in mitigation efforts. These models enhance carbon reduction strategies,
optimize renewable energy use, and support sustainable urban planning. By leveraging machine learning, the
research demonstrates how Al-driven approaches offer data-backed solutions for climate change mitigation
and adaptation. These innovations provide practical strategies to address global environmental challenges
effectively.

Keywords: Advanced Al; Machine Learning; Deep Learning Techniques; Climate Change.
RESUMEN

Este articulo explora el papel transformador de la inteligencia artificial y el aprendizaje automatico en la
lucha contra el cambio climatico. Destaca como las técnicas computacionales avanzadas mejoran nuestra
comprension y respuesta a los cambios ambientales. Los algoritmos de aprendizaje automatico procesan
grandes conjuntos de datos climaticos, revelando patrones que los métodos tradicionales podrian pasar por
alto. Las redes neuronales de aprendizaje profundo, especialmente eficaces en la investigacion climatica,
analizan imagenes satelitales, datos de sensores climaticos e indicadores ambientales con una precision sin
precedentes. Las aplicaciones clave incluyen la modelizacion predictiva de los impactos del cambio climatico.
Mediante redes neuronales convolucionales y recurrentes, los investigadores generan proyecciones de alta
resolucion sobre el aumento de temperaturas, el nivel del mar y la probabilidad de eventos climaticos
extremos con notable precision. La IA también desempena un papel fundamental en la integracion de datos,
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combinando observaciones satelitales, mediciones terrestres y registros historicos para crear modelos
climaticos mas fiables. Ademas, los algoritmos de aprendizaje profundo permiten el monitoreo ambiental
en tiempo real, rastreando cambios como la deforestacion, el derretimiento de los casquetes polares y las
transformaciones de los ecosistemas. El articulo también destaca los modelos de optimizacion impulsados
por IA en los esfuerzos de mitigacion. Estos modelos mejoran las estrategias de reduccion de carbono,
optimizan el uso de energias renovables y apoyan la planificacion urbana sostenible. A través del aprendizaje
automatico, la investigacion demuestra como los enfoques basados en IA ofrecen soluciones respaldadas
por datos para la mitigacion y adaptacion al cambio climatico, proporcionando estrategias practicas para
abordar los desafios ambientales globales de manera efectiva.

Palabras clave: IA Avanzada; Aprendizaje Automatico; Técnicas de Aprendizaje Profundo; Cambio Climatico.

INTRODUCTION

The article on advanced Al, machine learning, and deep learning techniques for climate change studies
represents a pivotal intersection between cutting-edge computational technologies and environmental science.
.2 Building upon traditional climate research methodologies, this approach introduces a transformative
paradigm that leverages artificial intelligence’s unprecedented analytical capabilities to address global
environmental challenges.

Machine learning and deep learning algorithms offer researchers powerful tools to transcend conventional
data analysis limitations.® By processing immense volumes of complex, multidimensional environmental data,
these computational techniques can reveal intricate patterns and correlations that human analysts might
overlook. The chapter emphasizes how neural networks can synthesize information from diverse sources—
satellite imagery, ground-based sensors, historical climate records, and real-time environmental monitoring
systems—creating more comprehensive and nuanced climate models. The technological framework presented
demonstrates remarkable potential across multiple research domains.® Predictive modelling stands out as
a critical application, with advanced Al algorithms generating high-resolution climate projections that
significantly improve our understanding of potential future scenarios.®® These models can forecast temperature
variations, sea-level changes, and extreme weather event probabilities with unprecedented accuracy, providing
policymakers and researchers with critical insights for strategic planning and mitigation efforts.

Moreover, the research highlights Al’s role in environmental monitoring and strategy development. Deep
learning algorithms enable real-time tracking of complex environmental changes, including deforestation,
ecosystem transformations, and glacial melting. By converting massive datasets into actionable intelligence,
these computational techniques bridge the gap between raw information and strategic environmental
management.

The chapter also explores optimization models powered by machine learning, which can design more effective
carbon reduction strategies and support sustainable urban planning.® These Al-driven approaches represent
a sophisticated method of developing targeted interventions that balance environmental preservation with
economic and social considerations.

Ultimately, this research underscores the critical importance of interdisciplinary collaboration. By integrating
advanced computational techniques with climate science, researchers can develop more nuanced, data-driven
approaches to understanding and mitigating global environmental challenges. The Al-enhanced methodologies
presented offer a beacon of technological hope in addressing one of the most complex global issues of our
time. As climate change continues to evolve as a critical global concern, the computational techniques outlined
in this chapter demonstrate the transformative potential of artificial intelligence in developing innovative,
responsive, and sophisticated environmental research and intervention strategies.

Literature review methods of inclusion and exclusion
Inclusion Criteria
The literature selection for this research follows a structured inclusion process to ensure relevance and
quality. The following criteria were applied:
1. Relevance to Al and Climate Change: articles that specifically discuss artificial intelligence,
machine learning, or deep learning applications in climate change research.
2. Peer-Reviewed and Scholarly Sources: only peer-reviewed journal articles, conference
proceedings, and authoritative institutional reports are considered.
3. Publication Date: literature published within the last ten years (2014-2024) to ensure up-to-date
technological and scientific advancements.
4. English Language: research articles and reports written in English to maintain consistency in
interpretation and analysis.
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5. Technological Integration: studies highlighting Al-driven models, algorithms, or computational
techniques for climate prediction, environmental monitoring, and mitigation strategies.

6. Empirical Studies: research that includes case studies, experiments, or real-world applications of
Al in climate change.

Exclusion Criteria
To maintain a focused scope, the following exclusion criteria were applied:
1. Non-Al-Based Climate Research: articles that discuss climate change without integrating Al
methodologies.
2. Non-Peer-Reviewed Sources: blog posts, opinion pieces, and non-scientific sources are excluded.
3. Outdated Studies: research published before 2014 unless foundational to Al’s role in climate
science.
4. Irrelevant Technological Focus: studies focusing on general environmental science without a
technological component.
5. Duplicate Studies: repeated studies with no new findings or methodological advancements.

Boolean Operators for Literature Search
To refine the literature search, Boolean operators were used in academic databases (Google Scholar, IEEE
Xplore, Scopus, and Web of Science). The search queries included:
e (“Artificial Intelligence” OR “Machine Learning” OR “Deep Learning”) AND (“Climate Change” OR
“Global Warming”)
e (“Alin Climate Science” OR “Al for Environmental Monitoring™) AND (“Prediction” OR “Mitigation”)
e (“Neural Networks” OR “Algorithmic Models”) AND (“Sustainability” OR “Carbon Emission
Reduction”)

These Boolean strategies ensure comprehensive retrieval of relevant and high-quality research articles
aligning with the study’s objectives.

Table 1. Inclusion and Exclusion Criteria
Criteria Inclusion (v') Exclusion (X)  Count

Al and Climate Change Relevance v X 150
Peer-Reviewed Sources v X 120
Publication Date (2014-2024) v X 100
English Language v X 130
Technological Integration v X 110
Empirical Studies v X 90
Non-Al-Based Climate Research X v 50
Non-Peer-Reviewed Sources X v 40
Outdated Studies (Pre-2014) X v 60
Irrelevant Technological Focus X v 30
Duplicate Studies X v 20

DEVELOPMENT
Advancing Climate Modeling through Artificial Intelligence: A Technological Breakthrough

The exponential growth of information sources has unveiled unprecedented opportunities to leverage
emerging technologies, particularly advanced artificial intelligence, in enhancing complex systems like global
climate models. While current global climate models represent our most sophisticated tools for projecting
climate change across regional and global scales, they remain fundamentally constrained by computational
limitations in modeling turbulent atmospheric phenomena. 8

Traditional climate models struggle with intricate atmospheric dynamics, especially in representing cloud
formations and moist air convection. These models rely on subgrid parameterizations that function more like
adaptive tuning mechanisms rather than providing precise representations of cloud motions—critical drivers
of global climate variability. This computational constraint has long hindered our ability to generate highly
accurate climate predictions.®

Artificial intelligence emerges as a transformative solution to these computational challenges. The
convergence of rapidly expanding observational datasets and advanced Al technologies positions machine
learning as a potential game-changer in climate science.® Al technologies promise to revolutionize global
climate models by enhancing resolution, improving grid-scale interactions, and more accurately representing
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complex atmospheric processes.
The potential improvements span multiple critical atmospheric domains, including:

¢ Dry dynamical kernels

Convective forcing mechanisms

Grid-scale condensation

Radiation interactions

Cumulonimbus cloud formations

Boundary layer dynamics

Cloud microphysics

Subgrid turbulence modeling

Current research demonstrates diverse machine learning approaches, from linear regression models to
sophisticated neural network architectures. Support vector machines and advanced neural networks have
shown particular promise in prediction, classification, pattern recognition, and numerical optimization of
climate models."® This technological integration represents more than incremental improvement—it signals a
paradigm shift in our approach to understanding global climate dynamics. Machine learning and deep learning
technologies offer unprecedented capabilities to process and interpret massive, complex observational datasets,
potentially transforming our predictive capabilities. By bridging computational limitations and providing more
nuanced representations of atmospheric interactions, Al technologies hold the potential to significantly enhance
our understanding of climate change, offering more precise, comprehensive models that can guide critical
environmental policy and mitigation strategies."

Deep Learning Paradigms in Climate Change Research: A Comprehensive Exploration

In the rapidly evolving landscape of climate science, deep learning has emerged as a transformative
technological approach, offering unprecedented capabilities for modeling and understanding Earth’s complex
environmental systems. This chapter, aligned with the book’s focus on “Advanced Al, Machine Learning and
Deep Learning Techniques for Climate Change Studies,” provides an extensive examination of deep learning’s
revolutionary potential in climate research, (figure 1).

r’ TN —1
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/ Smart meter \

Renewable energy collector I Power distribution cabinet

t_ oudaon T )
I Al

Artificial intelligence

Storage devices

Figure 1. Depicting the role of AI71314

Deep learning technologies distinguish themselves from traditional machine learning models through their
sophisticated architectural design. Unlike conventional approaches that require manual feature extraction,
deep learning models can autonomously learn optimal representations of spatiotemporal data, enabling more
nuanced and comprehensive climate predictions. These models characteristically employ multiple hidden
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layers, allowing for increasingly complex and abstract representations of environmental phenomena. >

The technological advancement is particularly significant in climate science, where understanding
intricate interactions between global systems demands computational approaches that can process massive,
multidimensional datasets. Deep learning algorithms demonstrate remarkable capabilities in various critical
domains.

RESULTS AND DISCUSSION
Climate and Weather Pattern Analysis

Deep learning algorithms have revolutionized our approach to understanding and predicting climate and
weather patterns by processing vast historical and real-time meteorological datasets. These advanced neural
networks can identify subtle, complex relationships within atmospheric data that traditional statistical models
often overlook.™® By integrating multiple data sources and employing sophisticated pattern recognition
techniques, these models enable more accurate predictions of weather phenomena, including extreme events
like hurricanes, heat waves, and prolonged drought conditions. The technology’s ability to analyze intricate
temperature, precipitation, and atmospheric interactions allows researchers to develop more comprehensive
long-term climate trend forecasting and seasonal prediction models, providing critical insights into global
environmental dynamics.

Remote Sensing Data Interpretation

Convolutional neural networks have transformed remote sensing data analysis by offering unprecedented
capabilities in processing satellite and aerial imagery. These advanced Al systems can rapidly classify and
segment geographical features, detecting minute environmental changes such as deforestation, ice melt, urban
expansion, and ecosystem transformations.® By automating the interpretation of high-resolution imagery,
these technologies enable researchers to monitor global environmental changes in real-time with extraordinary
accuracy. The ability to process massive geospatial datasets quickly allows for more responsive and dynamic
environmental monitoring, supporting critical research into climate change impacts and ecological shifts across
different geographical regions.

Cybersecurity Applications in Environmental Monitoring

As environmental monitoring becomes increasingly dependent on complex digital infrastructure, Al-
powered cybersecurity systems have emerged as crucial guardians of critical climate research networks.
These advanced systems employ sophisticated algorithms to detect potential cyber threats, analyze network
traffic patterns, and identify unusual activities targeting environmental data systems. By creating resilient
communication networks and implementing intelligent threat detection mechanisms, these technologies
protect sensitive climate research data from potential breaches or malicious manipulation. The integration of
cybersecurity measures with environmental monitoring platforms ensures the integrity and continuity of global
climate research efforts.

Complex System Modeling and Prediction

Advanced neural network architectures have opened new frontiers in modeling and predicting complex
environmental systems. These computational approaches enable researchers to simulate intricate interactions
between various environmental components, integrating diverse data sources to create holistic predictive
frameworks. By developing multi-layered models capable of understanding non-linear environmental dynamics, ??
scientists can now generate more precise long-term climate change scenarios. These sophisticated simulation
techniques support the development of more targeted and effective climate intervention and mitigation
strategies, providing policymakers and researchers with nuanced insights into potential future environmental
transformations.

Each of these domains represents a critical application of artificial intelligence in addressing global
environmental challenges, demonstrating the transformative potential of advanced computational techniques
in understanding, monitoring, and responding to complex climate systems. Therefore, the chapter delves into
the theoretical foundations of deep learning architectures, exploring how multiple neural network layers can
uncover hidden patternsin climate data that traditional statistical models might miss.?" This approach transcends
previous computational limitations, offering researchers unprecedented insights into global environmental
dynamics. Technological infrastructure developments have been crucial in enabling these advanced modeling
techniques. The proliferation of high-performance computing resources—including multi-core processors and
specialized graphical processing units—has made training complex neural networks increasingly feasible. These
technological innovations allow for more sophisticated, layered computational models that can handle the
immense complexity of global climate systems.? By leveraging deep learning’s ability to learn and abstract
information across multiple computational layers, researchers can now develop more precise, adaptive
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climate models. These models represent a significant leap forward in our capacity to understand, predict, and
potentially mitigate the impacts of climate change.The research underscores deep learning’s transformative
potential, positioning it as a critical tool in addressing one of the most complex scientific challenges of our
time: comprehending and responding to global environmental transformation. @

Convolutional Neural Networks (CNNs)

Recently, CNN architectures have been widely used in the climate field. CNNs have several hidden layers
to detect or exploit patterns related to the given input data. They act like a human visual perception system
and have proven to be efficient in image and video recognition and classification. CNNs are suitable for
handling multi-dimensional data such as time-series data, climate model data, agriculture-based data, and
remote sensing data communications. The network first passes the data through several layers of convolution,
normalization, scaling, and pooling using non-linear activations.?* It sends the data to a kind of fully connected
hidden layers similar to an artificial neural network to make predictions on the given dataset. These fully
connected layers are just the multi-layer perceptron. Convolution is the mathematical process of combining
two functions to produce a third function. In CNNs, it determines the input values and weights using the kernel
function, creates the feature map, sweeps across the input data, and then modifies or processes it by using
pooling techniques. Batch normalization is used to improve the training of the neural network to normalize the
input activations. It is a simple and effective technique that allows for the use of much higher variances and
minimal regularization inside the operation function. It improves learning in a network and the lateral speed of
training. Batch normalization can be commonly used as a default.

Recurrent Neural Networks (RNNs)

Recurrent neural networks (RNN) are a type of artificial neural network. The main advantage of a recurrent
neural network, which makes it unique from other types of networks, is that it is capable of performing well
with sequential as well as time series data due to its feedback loop that allows connection to previous inputs
and outputs. There are two types of loops in RNN, namely, the temporal loop and the spatial loop.?529 A
temporal loop connects previous layers to the current layer, and a spatial loop connects the same layers in
time.

A recurrent neural network is trained to perform a specific task under a supervised learning setting. RNNs
have internal memories, meaning they can remember important information from previous inputs and use it
later in the future. In RNNs, when we calculate the next output given the current input, they consider previous
knowledge as well as the current input. However, the main problem with recurrent neural networks is the
vanishing gradient problem. This vanishing gradient problem occurs when the gradients flow back in time and
become so small that they stop the learning process of the network. To solve this problem, Long Short-Term
Memory (LSTM) networks, which are a more advanced form of RNN, have been introduced.

Generative Adversarial Networks (GANs)

GANs are a class of unsupervised deep learning-based generative models that can learn to generate
authentic data samples. There are two major components of GAN: a discriminator network and a generator.
The main characteristics of the GAN network are that they are context-specific, can extract, model, and
replicate statistically frequent patterns among both discrete and continuous variables. It also helps understand
higher-order interactions and can model nonlinearity more applicable for real-life problems than its linear
counterparts. GANs generate new data by learning very complex relationships and structures among different
kinds of data, and they can generate large amounts of data that then feed a wide variety of deep learning
models. % The discriminative model, which tries to distinguish between the fake and real data, is modeled
by deep neural networks that are often referred to as the classifier. The generative model, modeled by deep
neural networks, is used to produce ‘fake’ data. These generated data are of similar nature to the initial data
from the training set.

In terms of climate change, GANs have been used in various applications for diverse purposes such as
anomaly detection and data utilization, from remote sensing and simulation outputs. Moreover, recent work
demonstrates the advantages of GANs in climate science by using climate data to solve data-related problems,
including remote sensing, weather forecasting, and climate model development. With the help of GANs,
futuristic climate models are being developed more accurately and generating more precise data.? These
models forecast temperature, precipitation, and sea level. By delivering better outputs, they will help make
it possible for places around the world to understand and predict what conditions to expect in the future. A
series of advances were discovered in remote sensing to characterize and detect uncertain conditions such as
cyclones and to build a 3D tree model in local regions. GANs help in the generation of authentic data using
unsupervised learning, which provides opportunities for invaluable but limited data applications.
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Applications of Al and Machine Learning in Climate Change Studies

Deep learning and machine learning have been successfully applied in climate informatics on various
themes, including weather and climate prediction, climate simulation, data-driven parameterization, and the
development of simplified climate models. In this chapter, we present some important applications of advanced
Al, ML, and DL techniques on different themes of climate change. These techniques have developed over time
to solve a range of complex associated problems, from global climate forecasting to local severe weather
prediction.®%3" The success of statistical weather prediction and climate prediction methods mostly depends
on numerous features. ML and DL approaches have achieved state-of-the-art results in various computer vision,
natural language processing, and quantitative analysis tasks (figure 2).
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Figure 2. Introduction of Al and Machine learning®1.1

The primary contribution of this study has been a comprehensive review of advanced machine learning and
deep learning approaches that contribute to the fields of weather forecasting and climate change studies. Our
review showed that many sophisticated deep learning architectures have been developed over the years in
application to various fields, including geophysical datasets. However, due to space constraints, the number
of applications in weather and climate science is relatively limited.®? A proper and future-oriented sense of
weather forecasting is really necessary to take necessary measurements on time. Moreover, existing forecasting
methods suffer from rapid land-use changes and climate change, and this limitation is forcing the meteorological
community to improve existing methods or create new ones to achieve accurate forecasts.

Climate Pattern Recognition

Climate patterns can be associated with the availability of sunshine or wind for renewable energy
applications, flooding or drought patterns for water management, and, at finer scales, they may also affect
the predictability of those weather variations that could compromise the collection activities of solar or wind
generation forecasting systems, or could challenge the structural resilience of hydroelectric power generation
systems. Historical data about temperature, pressure, humidity, and wind shifts are usually employed in
numerical weather models and in climate studies, offering regional and global coverage for machine learning
techniques.®

Interestingly, features associated with reanalysis data are more suited for climate pattern recognition
purposes than those of direct measurements, especially at finer scales. Direct measurements are composed
of point data, gathered at locations with specific latitudes and longitudes that, being specific to well-defined
regions, may poorly represent geospatial patterns, tensioned wave patterns,®¥ spatial correlations, or complex
atmospheric dynamics; direct measurements are not capable of capturing microclimates, which is a disadvantage
for climate studies. In contrast, reanalysis data have a more widespread spatial distribution, providing source
data for the numerical weather models responsible for generating forecasts, as well as for the atmospheric-
oceanic and physical state models that support climate studies.
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Extreme Weather Event Prediction

Extreme weather events are one of the biggest concerns regarding the impacts of climate change. There
is a consensus that these events will most likely increase in frequency and intensity. With the prediction of
these events, it is possible to have action plans for when they occur, reducing their impact. Some solutions use
statistical methods to predict extreme events by combining data from a few variables, some data preparation,
feature engineering, and time series forecasts within specified tolerances. Others use data classification methods
to predict the classes of extreme events with more data preprocessing and feature engineering techniques and
a window to include past event data.®»

Combined data feature engineering time series forecasts were remediated using a neural network-based
solution. The initial dataset consisted of 18 attributes for a period of 84 months. Simple transformations of
the original data were carried out based on the values for wind speed and the day of the event.®® Due to the
success of deep learning in solving various business problems and the possibility of using these models to find
the correlations that classical statistical models have difficulty finding, the study analyzed the impact of a deep
learning neural network model.

Climate Data Analysis and Visualization

Climate change spatial patterns may be described, processed, and interpreted using software tools, GIS
technologies, and language libraries. These include interactive cartographic tools, Geographic Information
System (GIS) software, and language libraries, which are often used for processing and evaluating geographic
data. These software tools may be used to process environmental data and are sometimes linked to advanced
visualization tools, which help to transfer bare numbers to comprehensive data visualization forms such as
maps, timelines, trends, or pie and bar charts and show clear climate meanings to users.®”)

Visualization tools incorporate statistical data into different graphs and maps to give the map and different
graphs colors, legends, and sizing properties, and enable developers to interact with these datasets clearly.
A color gradient may be used as a legend, enabling developers to quickly understand and interpret various
climate and environmental data.®® Map-based visualization may also show changes in climate variables such
as temperature increases and rainfall patterns by region. Symbols or heatmap overlays may be used to show
climate change on top of energy-related datasets. In urban environmental studies, for instance, users may
interact with maps to improve their understanding of temperature, air quality, rainfall, water levels, and other
environmental patterns.

Challenges and Future Directions

Climate change represents one of the most critical challenges to global sustainability, demanding innovative
interdisciplinary approaches to understand, predict, and mitigate environmental transformations. The
convergence of artificial intelligence, machine learning, and deep learning technologies offers unprecedented
computational capabilities for addressing this complex global issue. This chapter provides a comprehensive
examination of advanced Al and machine learning techniques applied to climate change research, exploring
their transformative potential in solving and predicting environmental challenges. By leveraging sophisticated
computational methodologies, researchers can now develop more nuanced, precise models of complex climate
systems that traditional approaches could not effectively capture.®**"The research focuses on critical areas of
climate change investigation, including:

I’ll provide concise notes on these climate modeling and atmospheric research topics.

Dynamical Downscaling of Climate Models

A technique to enhance spatial resolution of global climate models

Uses regional climate models to generate high-resolution climate projections

Captures localized terrain effects and micro-scale meteorological processes

Bridges gap between broad global simulations and detailed regional climate understanding

Advanced Weather Simulations

Utilizes high-performance computing and sophisticated algorithms
Integrates complex atmospheric physics and real-time data assimilation
Enables more accurate short-term and medium-range weather predictions
Incorporates machine learning and Al to improve predictive capabilities

Precise Climate Forecasting
e Combines multiple data sources including satellite, ground, and oceanic observations
Employs advanced statistical and machine learning techniques
Focuses on reducing uncertainty in long-term climate projections
Develops probabilistic forecasting models for different climate scenarios
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Precipitation Pattern Analysis

e Examines spatial and temporal variations in rainfall distribution
Uses statistical techniques to identify trends and anomalies
Crucial for water resource management and agricultural planning
Integrates remote sensing and ground-based precipitation data

Extreme Weather Event Prediction

Develops early warning systems for severe weather phenomena

Uses ensemble forecasting and probabilistic approaches

Analyzes historical data and climate change impacts on event frequency
Supports disaster preparedness and risk mitigation strategies

Time-Dependent Climate Studies

Investigates climate changes across different temporal scales
Explores historical climate reconstructions and future projections
Analyzes decadal and centennial climate variability

Integrates paleoclimate data with contemporary climate models

Large-Scale Feature Learning and Classification

Applies machine learning techniques to climate data analysis

Identifies complex atmospheric and oceanic patterns

Uses deep learning for feature extraction and climate pattern recognition
Supports climate change research and predictive modeling

A key contribution of this article is the comprehensive categorization of Al and machine learning techniques
specifically tailored to climate change research.“? This taxonomical approach provides researchers with a
structured framework for implementing advanced computational strategies in future environmental studies. The
investigation goes beyond mere technical analysis, offering a critical exploration of how artificial intelligence
can revolutionize our understanding of global climate dynamics. By synthesizing diverse computational
techniques, the research demonstrates the potential to transform climate change research from retrospective
analysis to predictive, proactive modeling. The chapter systematically examines the application of advanced
Al methodologies across multiple research domains, highlighting their capacity to process massive, complex
datasets and uncover intricate environmental patterns.“) These techniques enable researchers to develop more
sophisticated models that can simulate long-term climate scenarios with unprecedented accuracy. Moreover,
the research critically assesses current technological limitations and outlines future research directions.®?
By identifying existing challenges and potential avenues for technological innovation, the chapter provides a
roadmap for continued advancement in Al-driven climate change research. Ultimately, this comprehensive study
underscores the critical role of artificial intelligence in addressing one of the most significant environmental
challenges of our time, offering hope through technological innovation and sophisticated computational
approaches.

CONCLUSIONS

The comprehensive exploration of advanced artificial intelligence, machine learning, and deep learning
techniques for climate change studies reveals a transformative landscape of computational methodologies
with significant potential for environmental research and intervention. Our systematic investigation has
demonstrated the remarkable capabilities of these advanced computational techniques across multiple
critical domains, uncovering new pathways for understanding and addressing global environmental challenges.
The research highlights the multifaceted nature of Al applications in climate science, emphasizing not only
traditional data sources but also the critical role of emerging computational approaches in environmental
modeling. By integrating sophisticated machine learning algorithms with complex climate datasets, researchers
can now generate more nuanced, precise representations of environmental dynamics that were previously
impossible to conceptualize.

Key findings underscore the significant advancement of Al and machine learning techniques, which have
achieved a sophisticated level of development offering unprecedented efficiency, accuracy, interpretability, and
generalizability in climate change studies. These computational approaches provide valuable supplementary
tools to expert-led climate research, enabling more comprehensive and dynamic investigation of environmental
systems. Advanced techniques show particular promise in spatiotemporal weather forecasting, complex
environmental modeling, and predictive climate change analysis. Looking forward, the research community
must prioritize expanding the application domains of these computational techniques. This involves
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diversifying research beyond current focus areas of atmospheric physics, ecological processes, and remote
sensing, and exploring interdisciplinary approaches that integrate Al techniques with broader environmental
research domains. The goal is to develop more holistic, adaptive frameworks that can capture the intricate,
interconnected nature of global climate systems. Critical recommendations for future research include
enhancing computational methodologies, developing more sophisticated machine learning algorithms capable
of processing increasingly complex, multidimensional climate datasets, and improving model interpretability
and transparency. Researchers should also focus on integrating emerging technologies and creating synergies
between Al, machine learning, and other computational innovations. A paramount objective is translating
advanced computational research into actionable policy and intervention strategies. By supporting data-
driven decision-making processes in climate change mitigation and adaptation, these technologies can bridge
the gap between scientific understanding and practical environmental management. This requires fostering
interdisciplinary collaboration, encouraging knowledge exchange between climate scientists, computer
scientists, and domain experts. While current Al techniques demonstrate significant potential, substantial
research opportunities remain. Future investigations must continue to expand application areas, improve
computational methodologies, and develop more comprehensive approaches to climate change modeling.
The research ultimately underscores artificial intelligence’s transformative potential in addressing global
environmental challenges, offering a beacon of technological hope in our collective effort to understand and
mitigate climate change impacts.
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By improving the prediction, understaing, and

communication of powerful events in the atmosphere
; and ocean, artificial intelligence can revolutionize how
communities respond to climate change.
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he year is 2028 and the weather continues
3888 to produce climate-induced extremes, ~ ¢iyments can act immediately
ess but something has changed. Your phone  to save lives and property.

isnow giving you early, accurate warnings Such a scenario is not just a

to help vou prepare vision: It may be a reality in a
p you prepare. few years. As the climate

changes, weather extremes are
affecting species and ecosystems around the
globe —and are becoming more extreme (see the
article by Michael Wehner, Puysics Topay, Sep-
tember 2023, page 40). At the same time, recent
developments in artificial intelligence (Al) and
machine learning (ML) are showing how that
vision might be realized.

Al offers multiple methods for handling
large quantities of data, helping automate pro-
cesses, and providing information to human
decision makers.! Traditional Al methods have
been used in environmental sciences for years.?
Such methods include statistical techniques,
such as linear regression, and basic object-
grouping methods, such as clustering. Both
have a history in environmental-science dating
back several decades.® A little over a decade
ago, weather and climate phenomena began to
Imagine that high-impact weather phenom-  be understood with more-modern Al tech-
d ena, such as those described above, are forecast niques, including decision trees—basically
with sufficiently advanced warning and preci-  flowcharts created by an algorithm rather than
sion that humankind is able to significantly constructed by hand—and groups of trees
mitigate the effects of such events globally. Fur-  known as random forests.
thermore, the predictions are known to be trust- ML, a subset of Al, focuses on methods that
worthy, so individuals and local and state gov- use data to learn and adapt so that they’re

Major heat wave hitting the SW United
States in 3 weeks. Be prepared for an
extended period of extreme tempera-
tures and higher humidity than usual.

Warning: Baseball-sized hail and
strong winds from the north are ex-
tremely likely to hit your house in
approximately 20 minutes. Move be-
longings inside, and stay away from
any north-facing windows.

Extreme cold temperatures are arriv-
ing in your area in 3 days and will last
for at least 4 days. Prepare now to
ensure your pipes do not freeze, and
be ready for potentially extended peri-
ods of electrical outages.
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SEA TURTLES were rescued off the coast of Texas by volunteers in February 2022 (left) and January 2018 (right) after the successful
prediction of a cold-stunning weather event by an artificial-intelligence-based forecasting model. After measurements of the turtles were
taken, they were transported to a rehabilitation facility. (Courtesy of AI2ES.)

generalizable to novel situations. When Al is discussed in the
news, it is most often referring to a specific form of ML called
deep learning,* which has become popular lately. The key
changes facilitating the explosion of deep learning have been the
creation of innovative ways to handle spatial and temporal de-
pendencies in the data and corresponding hardware improve-
ments, which have made it possible for neural networks, a type
of deep learning, to be trained with millions of parameters.
Deep learning has revolutionized the field of Al across var-
ious applications, including language translation, game theory,
and image recognition (see, for example, the article by Sankar
Das Sarma, Dong-Ling Deng, and Lu-Ming Duan, Puysics
Topay, March 2019, page 48). Al methods can do the same for
weather and climate predictions too (see reference 5 and Prys-
1cs Topay, May 2019, page 32). For example, multiple recent
papers have introduced global weather-forecasting systems
based entirely on Al methods. Although those systems need to
be trained by traditional numerical weather-prediction mod-
els, their predictions are made solely through a deep-learning
algorithm and do not depend on physics-based equations.®
Despite the long development history of AI methods for
predicting weather and climate events, few have been imple-
mented operationally by NOAA and private industry. Early
operational Al models were based on relatively simple architec-
tures, such as tree-based designs that can be read by humans.
Several new startup companies and larger, established compa-
nies, however, are focused on applying more complex Al meth-
ods to commercial weather-prediction products. NOAA has
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also recently begun to deploy Al methods for targeted applica-
tions. With all the changes, it is critical that AI methods are
beneficial to society, that they can be gauged by their users for
their applicability, and that their predictions can be trusted.
Developing and deploying trustworthy Al requires a diverse
multidisciplinary research team. The team at the NSF Al Institute
for Research on Trustworthy Al in Weather, Climate, and Coastal
Oceanography (AI2ES), for which the three of us work, consists
of Al developers, social scientists, atmospheric and ocean scien-
tists, and end users. AI2ES is rapidly developing new Al methods
that will enable us to improve our scientific understanding and
prediction of high-impact weather and climate phenomena, user
trust in Al products, and our communication of Al’s risks.”

Developing trustworthy Al

The diagram on page 29 outlines how the different pieces of
AI2ES work together to create trustworthy Al Traditional Al
work is often done by only computer-science researchers, but
our synergistic team is made up of researchers in Al, atmospheric
science, coastal oceanography, and risk communication. Our goal
is to ensure that we meet the needs of our end users—primarily
forecasters and emergency managers—and that we understand
what it means for Al to be trustworthy.

In any risky situation, successfully communicating and
managing risk depends on the trust between those involved.®
When applying Al methods to climate and extreme-weather
forecasting, the uncertainties of Al need to be added to the
uncertainties of the environmental predictions. The com-
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pounding uncertainties raise the stakes for effectively commu-
nicating the risks and make trust even more critical. When trust
in Al is low, Al-based forecasts and warnings may be ignored
or misconstrued. Al, therefore, needs to be both trusted and
trustworthy to be used in various high-risk situations.

Trust is usually enhanced by relevant evidence of compe-
tence and reliability,’ but trust in an Al model is also contingent
on people believing that the model aligns with their own inter-
ests. Biased or poor-quality training data can lead to biased or
more-uncertain Al forecasts, which have the potential to harm
those whose actions depend on the forecasts.

Models in Earth sciences are used for many purposes. Some
examples at AI2ES include predicting freezes for various
environmental-management purposes, protecting endangered
species, and forecasting and warning for severe convective
storms to protect people and save lives. Risk attitudes and trust
are known to vary by the nature of the decision and the decision
context®—who controls the decision making, for example, and
how catastrophic the consequences might be—and by the attri-
butes of the modeling system and modeling context.!! For those
reasons, understanding the nature of trust and developing trust-
worthy Al for Earth sciences requires codeveloping it with end
users. For applications where Al can affect vulnerable or large
populations, it's particularly important that AI developers work-
ing with end users employ a convergence approach—that is,
have experts in the environmental, decision, and Al disciplines
work together closely on specific, compelling problems.

AI2ES is developing and testing explainable AI methods to
help describe to end users how AI models function. Existing
physics-based prediction models have the advantage of being
driven by the underlying physics of the problem; one can nu-
merically represent the Navier-Stokes equations, for example.
But because Al is unconstrained by the laws of physics, it could
come up with a solution that violates those laws. Providing end
users with different methods to understand what the Al model
has learned may improve trust, and we are interviewing end
users to understand the efficacy of those methods.

Trust, however, is contextual and subjective, and trust in Al
models for weather and climate depends on a number of addi-

Trustworthy Al

tional factors beyond peering inside the AI model. Those fac-
tors include having experience with the model over time,
documenting performance and lack of bias across a range of
extreme events for which the models are designed, and work-
ing with end users to ensure that their needs are met.

Saving sea turtles

When strong cold fronts, such as the 2021 winter storm dubbed
Uri, reach the southeast US, the temperatures of bays, lagunas,
and other shallow bodies of water cool down rapidly. Below
certain water temperature thresholds,? fish and endangered
sea turtles become lethargic, or cold stunned, and most perish
if they’re not rescued. A community-wide effort for the Texas
coast has grown since the mid 2000s to prepare for and mitigate
the events. The program was updated following Uri, during
which a record 13 000-plus sea turtles became cold stunned.
Volunteers and employees of local, state, and federal agencies
collect cold-stunned sea turtles along the shores or in bodies of
water, and barge operators voluntarily interrupt their naviga-
tion through those waters. As climate change increases the
frequency of extreme events, those types of large-scale orga-
nized human interventions will arguably need to become more
frequent and more urgent if increasingly endangered species
and fragile ecosystems are to be preserved.

To coordinate the rescue of cold-stunned turtles, a team needs
real-time predictions of key environmental parameters, such as
localized water temperature. When Al has access to time series of
parameters from past extreme events, it is particularly well suited
to develop targeted operational models, such as one for predicting
when a cold-stunning event will happen. Al can take advantage
of big, diverse data, such as gridded numerical weather predic-
tions, satellite imagery, and ground-sensor readings.

Although the calibration of AI models can be lengthy, and
care must be taken to maximize and test generalization, oper-
ational computations are fast once the information is available,
particularly when done for just a few locations. The operational
cold-stunning model is a type of neural network and has been
used since the late 2000s. The first advisory and voluntary nav-
igation interruption took place 8-10 January 2010 with a pre-

Broadening

participation

INTEIS
communication

Environmental
science

Workforce

development

ai2es.org

Ethical, responsible, and use-inspired Al

THE COMPREHENSIVE APPROACH created by AI2ES, the NSF Al Institute for Research on Trustworthy Al in Weather, Climate, and Coastal

Oceanography. (Courtesy of AI2ES.)
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diction lead time of 48 hours. The system has been used several
times since, including during the past three winters, with pre-
diction lead times extended to 120 hours. The model is an es-
sential decision tool that local, state, and federal agency repre-
sentatives use when discussing with the private sector the
optimal timing of activity interruptions in Texas’s Laguna
Madre. The specifically designed Al model provides the long
lead time critical for redirecting cargo, contacting volunteers,
and carrying out other actions.

The sea-turtle program brings the possibility to test how
and why the trust in its Al model came about. The research
team and end users are further developing Al ensemble models
to quantify uncertainties around the predicted timing of the
cold stunnings. An events’ end is particularly challenging to
predict with a longer lead time.

As the frequency of extreme events increases, sea levels rise,
and other climate-driven challenges develop, even small flood-
ing events will have large effects. So decision makers will have
to start prioritizing and preparing for a broad range of emer-
gency events beyond the largest ones, such as hurricanes, for
which state and federal resources are deployed to assist local
responders. Results are demonstrating that Al is a well-suited
methodology to take advantage of large, diverse data sets and
model the nonlinear processes of coastal zones and other envi-
ronmental systems. Other coastal environmental models devel-
oped by AI2ES researchers include predictions of coastal fog,
coastal inundation, harmful algal blooms, eddy loop currents
in the Gulf of Mexico, and compound flooding.

Severe storms
Thunderstorms worldwide produce various dangerous haz-
ards: strong wind, lightning, hail, and tornadoes—all of which
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cause significant loss of life and property. Of the billion-dollar
weather and climate disasters counted by NOAA every year,
thunderstorms account for the majority of the cleanup cost.
AI2ES is currently creating novel Al approaches to improve the
prediction and understanding of such hazards.

One such example is predicting the initiation of thunder-
storms up to an hour before they begin. Even 30 minutes of
trustworthy warnings will save lives and property. Airplanes
could be rerouted, boats could be brought back to shore and
sheltered, and event planners could safely evacuate large out-
door events to avoid disasters, such as the hailstorm that hit
Red Rocks Amphitheatre in Morrison, Colorado, in June and
injured 80-90 people.

AI2ES’s approach to modeling convective storms is codevel-
oped with researchers in NOAA’s National Severe Storms
Laboratory. Our work builds on NOAA’s warn-on-forecast
system (WoFS)." It is a numerical weather-prediction system
that is run in real time at a high resolution over areas of the US
where the Storm Prediction Center expects a higher probability
of severe storms. AI2ES developed an AI postprocessing sys-
tem that uses numerical weather-prediction models and cur-
rent observations and outputs a real-time prediction of where
storms are most likely to occur in the next 30 minutes. To help
ensure that the system is trustworthy, AI2ES and NOAA will
continue to develop it at NOAA’s Hazardous Weather Testbed,
a unique facility that allows forecasters and emergency man-
agers to try out new technologies during severe weather events
and to provide feedback to the developers.

AI2ES is also working to improve the understanding and
prediction of tornadoes and hail. They are small-scale phenom-
ena that are challenging to predict, especially on a short time
scale and with high spatial precision, with current operational
weather models. One of our most recent methods is codevel-
oped with NOAA researchers working on the WoFS. Our focus
is on improving the nowcasting of severe hail events, which
predicts such events at high resolution spatially and within an
hour of their arrival. The WoFS runs in real time, but because
of the computational complexity of the model, which ingests all
the current observations, there is about a 15- to 30-minute lag
between the observations and the system’s predictions. We de-
veloped an Al prediction system that uses deep learning to
combine WoFS predictions with data from the National Light-
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ning Detection Network, operated by Vaisala,'
and we demonstrated a significant improvement
in the accuracy of short-term hail prediction.

Ethical, responsible Al

An integral part of trustworthy Al is ensuring
that it is developed ethically and responsibly. If
not, Al for environmental sciences can go wrong
in numerous ways.'® Extreme events tend to
disproportionately harm areas with fewer re-
sources and places with histories of systematic
discrimination. It is critical that society ensures
that Al is not deployed in any manner that will
perpetuate environmental or climate injustices.
That way, society as a whole can be more resil-
ient to climate change.
Another potential issue with Al for weather
prediction is bias, which affects all aspects of the
Al training process. In recent work, we have developed a cat-
egorization of bias in Al for Earth sciences by breaking it into
four main categories, each of which influences the others."”

e Systemic and structural biases include institutional and
historical biases that can influence the choices of data that are
made available, the labels on the data used for training Al, and
other aspects of Al model development and use. For example,
we demonstrated that tropical-cyclone initiation prediction is
more likely to occur after sunrise than before because of institu-
tional practices around examining the visible satellite imagery.

e Data bias can occur because of the data selected to train
the models and the processing techniques used to prepare the
data for training. Those choices can result in data that are not
representative of the intended populations, areas, or events
being modeled. Once the data are prepared and the Al model
trained, biases can be present in the validation of the model.
Humans must choose which score they will use to validate the
model and which cases will be used as a case study. The choices
can be affected by human judgment and decision biases, such
as confirmation bias.®

e Statistical and model biases can affect the actual model
that is trained and can be strongly affected by human biases.
For example, human programmers must choose the methods
that they will use to evaluate the model.

e Human biases are present throughout AI methods, from
data selection to the choice of model, but they are also present
in the deployment and use of the model. End users, such as
forecasters and emergency managers, for example, may have
information overload or may need to make split-second deci-
sions, which can bias their use of Al

Three of the perhaps most common ethical theories are ap-
plicable to AI for the environmental sciences: consequential-
ism, which judges the morality of an action by its conse-
quences, such as through a benefit—cost analysis; deontology,
which judges whether an act is ethical by how the act conforms
to duties or moral principles, such as the imperative to be hon-
est; and virtue ethics, which argues that a “right” action is
important to achieve human well-being. Protecting the most
vulnerable might not always pass a benefit—cost rule, but de-
ontological and virtue ethics could require it, making it
imperative.

But even to understand how Al models might affect specific

decisions or users in particular circumstances generally re-
quires an insider perspective, achievable only through devel-
oping Al with the people likely to be affected. Many of those
concerns and needs can be addressed, and trustworthy Al can
be developed by early and continued codevelopment of Al
models with direct representation; meaningful, ongoing par-
ticipation of likely end-user communities; and communication
throughout the development process with risk-communication
experts. But such capabilities require organizational intent
from the teams developing the AI models.

The future of trustworthy Al

Given the current exponential growth of Al in the sciences,
society stands at the cusp of major developments in Al for sci-
ence and society in general. New methods could be developed
and deployed with a swiftness that was not possible even a few
years ago. That gives us an unprecedented opportunity to
shape the process of how Al models are developed to fully
benefit society and to address environmental and climate-
justice issues. The process, however, must ensure that the mod-
els are ethical, responsible, and deserving of trust if society is
to realize the full benefits of AL

To achieve such goals, and to minimize problems during the
release of new technology, more comprehensive processes and
development teams must be engaged. Funding from federal
agencies, private-sector entities, and other places must be
structured to reflect those needs. Codevelopment of Al re-
quires funding that allows for and encourages the develop-
ment of multidisciplinary teams committed to working with
end users. The benefits include acting ethically, avoiding large
disparities, increasing resilience to climate change, and broad-
ening the viewpoints, knowledge, and values represented on
the modeling teams.

REFERENCES

1. S.Russell, P. Norvig, Artificial Intelligence: A Modern Approach, 4th
ed., Pearson (2021).

2. A. McGovern et al., Bull. Am. Meteorol. Soc. 98, 2073 (2017); S. E.
Haupt et al., Bull. Am. Meteorol. Soc. 103, E1351 (2022).

3. H. R. Glahn, D. A. Lowry, J. Appl. Meteorol. Climatol. 11, 1203
(1972).

4. 1. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press

(2016).

. R.J. Chase et al., Weather Forecast. 38, 1271 (2023).
. K. Bi et al., Nature 619, 533 (2023).
. A.McGovern et al., “Weathering environmental change through

advances in AL"” Eos, 28 July 2020.

8. R. E. Lofstedt, Risk Management in Post-Trust Societies, Palgrave
Macmillan (2005); National Academies of Sciences, Engineering,
and Medicine, Communicating Science Effectively: A Research
Agenda, National Academies Press (2017).

9. National Academies of Sciences, Engineering, and Medicine,
Human-Al Teaming: State-of-the-Art and Research Needs, National
Academies Press (2022).

10. P. Slovic, The Perception of Risk, Routledge (2000).

11. E. Glikson, A. W. Woolley, Acad. Manage. Ann. 14, 627 (2020).

12. D.]. Shaver et al., PLoS One 12, 0173920 (2017).

13. H. Kamangir et al., Mach. Learn. Appl. 5, 100038 (2021).

14. D.]. Stensrud et al., Bull. Am. Meteorol. Soc. 90, 1487 (2009); K. A.
Wilson et al., Weather Clim. Soc. 13, 859 (2021).

15. H. Pohjola, A. Makeld, Atmos. Res. 123, 117 (2013).

16. A. McGovern et al., Environ. Data Sci. 1, e6 (2022).

17. A. McGovern et al., Artif. Intell. Earth Sys. 2, €220077 (2023).

18. R. S. Nickerson, Rev. Gen. Psychol. 2, 175 (1998).

N oG

JANUARY 2024 | PHYSICS TODAY 31

81:06:21 G20z AInr gz



S

ARTICLES FOR UTM SENATE MEMBERS "+

“Decoding the Climate Crisis: How Al is Fighting Climate Change”

TITLE SOURCE

4) Challenges of Artificial

Intelligence Development in the ENERGIES

Context of Energy Consumption

and Impact on Climate Change (Article From : MDPI)
(2024)

30t JULY 2025
SOURCE: PERPUSTAKAAN UTM




‘ energies

Review

Challenges of Artificial Intelligence Development in the Context
of Energy Consumption and Impact on Climate Change

Sergiusz Pimenow !

check for
updates

Citation: Pimenow, S.; Pimenowa, O.;
Prus, P. Challenges of Artificial
Intelligence Development in the
Context of Energy Consumption and
Impact on Climate Change. Energies
2024, 17,5965. https://doi.org/
10.3390/en17235965

Academic Editors: Joanna
Rosak-Szyrocka and Radostaw
Wolniak

Received: 30 October 2024
Revised: 20 November 2024
Accepted: 25 November 2024
Published: 27 November 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Olena Pimenowa 2/*

and Piotr Prus 3*

Faculty of Economics, Higher School of Security and Economics, 13 Kuklensko Schose, 4004 Plovdiv, Bulgaria;
sedj78@gmail.com

School of Business, The University of Economics and Human Sciences in Warsaw, 01-043 Warszawa, Poland
Department of Agronomy, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and
Technology, Al. Prof. S.Kaliskiego 7, 85-796 Bydgoszcz, Poland

*  Correspondence: o.pimenowa@vizja.pl (O.P.); piotr.prus@pbs.edu.pl (P.P.)

Abstract: With accelerating climate change and rising global energy consumption, the application of
artificial intelligence (AI) and machine learning (ML) has emerged as a crucial tool for enhancing
energy efficiency and mitigating the impacts of climate change. However, their implementation has
a dual character: on one hand, Al facilitates sustainable solutions, including energy optimization,
renewable energy integration and carbon reduction; on the other hand, the training and operation
of large language models (LLMs) entail significant energy consumption, potentially undermining
carbon neutrality efforts. Key findings include an analysis of 237 scientific publications from 2010 to
2024, which highlights significant advancements and obstacles to Al adoption across sectors, such
as construction, transportation, industry, energy and households. The review showed that interest
in the use of Al and ML in energy efficiency has grown significantly: over 60% of the documents
have been published in the last two years, with the topics of sustainable construction and climate
change forecasting attracting the most interest. Most of the articles are published by researchers
from China, India, the UK and the USA, (28-33 articles). This is more than twice the number of
publications from researchers around the rest of the world; 58% of research is concentrated in three
areas: engineering, computer science and energy. In conclusion, the review also identifies areas for
further research aimed at minimizing the negative impacts of Al and maximizing its contribution to
sustainable development, including the development of more energy-efficient Al architectures and
new methods of energy management.

Keywords: artificial intelligence; energy consumption; climate change; socially responsible business;
sustainability

1. Introduction

Climate change and rising energy consumption are among the most pressing chal-
lenges facing the modern society. The rapid growth in energy consumption, driven by
economic expansion and technological development, contributes to increased greenhouse
gas emissions and accelerates global climate change. In this context, the urgency of find-
ing innovative solutions to enhance energy efficiency is becoming increasingly apparent.
Artificial intelligence (Al) and machine learning (ML) have advanced rapidly in recent
years, showing significant potential to solve complex environmental challenges, such as
enhancing energy efficiency and reducing carbon emissions [1,2]. However, their impact
on energy consumption and climate change remains ambiguous.

On the one hand, Al holds significant potential to address global challenges outlined
by the UN [3], including climate change and other complex environmental and social issues,
which includes the following:
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- By predicting energy consumption, optimizing energy systems and integrating re-
newable energy sources, Al has the potential to become a key tool in the fight against
climate change [4,5].

- Improving the energy efficiency of buildings and industrial infrastructure, optimizing
the operation of energy systems in real time helps reduce overall energy consumption
and minimize the impact on the environment [6-9].

- Machine learning (ML) is used to predict climate change and its impact on energy
systems. Machine learning models allow us to build scenarios of future energy
consumption and adapt infrastructure to new conditions [10,11].

- Al can enhance the efficiency of renewable energy sources, such as wind and solar
power plants [6,9], which is particularly important in the decarbonization process [12].

- Al plays a key role in monitoring, managing and forecasting energy needs, taking into
account future climate change. This includes optimizing energy distribution, integrat-
ing renewable sources and reducing the load on power systems during periods of
peak demand [7,13,14]. These studies propose solutions to enhance the sustainability
of energy systems and reduce their carbon footprint [14,15].

On the other hand, the rapid growth in Al usage, particularly in large language
model (LLM) training, has led to a substantial increase in energy consumption [16]. Tech
giants, such as Google, OpenAl, Microsoft and others, despite their ambitious goals, face
significant challenges in achieving carbon neutrality by 2030 [17,18]. The high energy costs
associated with creating and operating powerful Al models highlight the contradiction
between technological progress and its environmental consequences [19]. Moreover, the
rise in energy consumption is directly linked to an increasing carbon footprint [18,19].
Therefore scientific efforts are aimed at finding solutions to improve the energy efficiency
of Al systems and minimize their negative impact on the environment [3,18].

Investigating the application of Al and ML to improve energy efficiency holds signifi-
cant potential for creating a more sustainable future with minimal negative consequences
for the environment [20,21]. However, a full understanding of the current situation requires
analyzing current achievements and existing barriers to determine the effectiveness of inte-
grating Al into business models of enterprises to solve global humanity’s challenges [22,23].
Further research is crucial to understand how Al and ML can contribute to reduce global
energy consumption without introducing additional climate risks.

Thus, the aim of this review is to synthesize and systematize the existing scientific liter-
ature, demonstrating how artificial intelligence (AI) and machine learning (ML) techniques
can contribute to energy efficiency in different industries and countries. The review also
aims to analyze the role of Al in addressing current climate challenges, including reducing
carbon emissions and optimizing resource use.

In order to achieve the set goal, the following tasks are defined:

- identify the main trends and research directions in which AI and ML are applied to
improve energy efficiency and address climate challenges;

- assess the main technical barriers that limit the widespread adoption of Al and ML in
practice and identify directions for overcoming them;

- examine how Al and ML can contribute to reducing carbon footprints and optimize
resources for long-term sustainable development.

This review provides an in-depth and comprehensive study of the impact of Al and
ML on energy efficiency, addressing the interrelated energy and climate aspects of these
digital technologies. Unlike previous studies, this review focuses on a comprehensive
analysis of technological barriers and innovative solutions and outlines specific directions
for future research. The findings are aimed at contributing to the knowledge for both the
scientific community and practitioners working in the field of sustainable development
and energy management.

Section 1 contains a description of the relevance of the topic, the aims and tasks of the
study and a summary of the current review.



Energies 2024, 17, 5965

30f34

Section 2 describes the methodology used to select and screen peer-reviewed articles,
ensuring a thorough and structured approach to the topic.

Section 3 contains a chosen selected list of research questions that are explored in the
research and deals with each topic individually.

Finally, Section 4 concludes the review by offering perspectives on future research
directions, emphasizing the critical need for continuous innovation to improve the energy
efficiency of companies and reduce the electricity consumption of LLMs by improving
their architecture.

2. Materials and Methods

This literature review addresses key issues related to the application of artificial
intelligence (Al) and machine learning (ML) techniques in the context of energy efficiency
and their impact on climate change. The following research questions were formulated to
structure the analysis:

- What energy-efficiency projects using Al and machine learning are currently being
implemented? This question aims to explore specific examples of Al and ML applica-
tions in energy-efficiency projects, with the goal of identifying successful cases and
innovative approaches.

- Which major industries, companies or countries are benefiting from the application of
Al and machine learning in energy efficiency? This question focuses on identifying key
players, such as industries, companies, and countries, that are most actively utilizing
Al and ML to achieve energy-efficiency solutions.

- What are the main problems and challenges facing companies, cities and states when
implementing energy-efficiency projects? This question seeks to uncover the existing
barriers for integrating Al into energy-efficiency practices, including technological,
financial and organizational obstacles.

- What are the prospects for applying Al and ML in energy-efficiency projects? This
question explores future research directions and innovations that could enhance the
use of Al in achieving energy-efficiency objectives.

The methodology of this literature review was developed to systematically analyze ex-
isting research on the application of artificial intelligence and machine learning techniques
in the field of energy efficiency and their impact on climate change. The primary goal is to
identify trends and challenges in the implementation of these technologies and forecast
their future impact on climate change. A systematic approach is used to emphasize the
transparency and reproducibility of the results.

The literature search was conducted using the Scopus database, which encompasses a
broad spectrum of peer-reviewed scientific articles and patents. The aim was to capture
a wide range of research across different fields and disciplines. Key terms relevant to the
research questions were used to develop the search strategy. The logical search string was
constructed as follows: TITLE-ABS-KEY ((“artificial intelligence” OR “machine learning”)
AND “energy efficiency” AND “climate change”) AND PUBYEAR AFT 2010 AND PUB-
YEAR BEF 2025. The search string was designed to capture both fundamental and recent
publications from 2010 to 2024, aiming to identify intersections between energy efficiency
and climate solutions through Al and ML. The keywords used in this literature review
were carefully selected to ensure both the completeness and relevance of the documents to
the study’s objectives and key research questions.

The search identified 237 relevant papers and 388 patents. Over 60% of the documents
were published in the last two years (2023-2024), reflecting a growing interest in the topic.
This rising trend is also evident in industry, with 243 patents filed in the past three years
(2022-2024), representing 63% of the total for the fourteen-year period. The increasing
number of patents is noT, with 59 filed in 2022, 85 in 2023 and 99 patents filed in 2024 (as of
16 October).

The resulting review data were categorized into key categories, including industries,
geographic distribution and types of research documents. Figure 1 illustrates the annual
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Figure 1. Distribution of documents by years. Source: compiled by authors.

Figure 2 illustrates the distribution of scientific articles retrieved from the Scopus
database categorized by subject area (Source: Scopus Analytics). The figure reveals that
nearly 60% of the articles are concentrated in three fields: Engineering, Computer Science
and Energy.

Documents by subject area

= Engineering
= Computer Science
= Energy
Environmental Science
= Mathematics
= Social Sciences
= Decision Sciences
m Physics and Astronomy
= Business, Management and Accounting
m Economics, Econometrics and Finance
= Chemical Engineering

m Other

81

Figure 2. Distribution of documents by industries. Source: compiled by authors.

Figure 3 presents the number of articles published by researchers from various coun-
tries, highlighting the geographic diversity and concentration of research efforts, particu-
larly in China, India, the UK and the US (Source: Scopus Analytics).
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Figure 3. Distribution of documents by countries. Source: compiled by authors.

Figure 4 illustrates the distribution of documents by types, indicating that articles
and conference publications account for over 80% of the total, with articles comprising the
largest share (Source: Scopus Analytics).

Documents by types

= Article
Conference Paper
m Review

m Book Chapter

m Conference Review, Book, Editorial

35%

Figure 4. Distribution of documents by types. Source: compiled by authors.

A systematic approach was employed to ensure comprehensive coverage of the field.
The selection process followed the methodology outlined in [24] and adhered to the guide-
lines set out in [25], ensuring transparency and rigor. Publications were evaluated using a
3-point quality scoring system to assess relevance and validity (see Table 1). Each study
was reviewed based on several criteria, including innovation, practical application and
strength of evidence. The systematic review method recommended in [26] was applied to
ensure the transparency and reproducibility of the results.
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Table 1. Evaluation of source quality.

Evaluation Question

Description Evaluation Metric

Stage of implementation of the energy

1 efficiency project using Al and ML 1: Experiments; 2: Economic impact; 3: Scalability.
The magnitude of the energy efficiency . S . A
2 effect from Al and ML projects. 1: Negligible; 2: Enterprise level; 3: Country level.
Identification and discussion of
3 challenges in implementing Al and ML 1: Minimal; 2: Key issues; 3: Detailed.
for energy efficiency projects.
4 Proposing future research directions to 1: Some; 2: General; 3: Detailed and innovative.

improve ML models.

Source: compiled by authors.

This study focused on four key questions related to the application of Al and ML

in energy efficiency. These evaluative questions (see Table 1) facilitated a comprehen-
sive assessment of the research findings while adhering to the principles of relevance
and objectivity.

Consequently, this approach enabled in-depth analysis and the identification of the

most significant areas for further research.

3. Results

The analysis made it possible to identify the following topics in scientific research that

have undergone their evolution during the analyzed period.

1.

Sustainable construction and green technologies that utilize Al and ML to enhance
the energy efficiency of buildings.

This topic centers on optimizing the energy efficiency of buildings, particularly in urban
areas affected by climate change and urban heat island effects. It encompasses the use
of physical simulation models, multi-criteria optimization, digital twins and cloud tech-
nologies to enhance the energy efficiency and resilience of buildings in the face of climate
change. Additionally, it addresses methods and approaches for improving building en-
ergy efficiency through passive measures, the use of sustainable ecological materials and
thermographic and Al-assisted optimization of the building life cycle.

Enhancing energy efficiency in transportation and e-mobility.

This topic addresses issues related to the development of electric vehicles, hybrid
transportation systems and the charging infrastructure. It encompasses transportation
energy management, energy efficiency and the safety of autonomous vehicles through
the application of Al and ML.

The role of Al in sustainable production and industrial automation.

This topic focuses on utilizing Al to optimize manufacturing processes, reduce energy
consumption and minimize the carbon footprint of the industry. It encompasses pre-
dictive maintenance, energy management and automation to enhance sustainability
and productivity, as well as the application of Al in agriculture.

Energy efficiency in smart energy grids.

This topic explores the role of Al and machine learning in optimizing energy manage-
ment within smart grids. It addresses demand management, real-time forecasting and
the integration of distributed energy sources to enhance grid stability and efficiency.
Climate change forecasting and the adaptation of energy systems.

This topic involves the application of mathematical models and machine learning to
predict climate change and its impact on energy systems. It includes the assessment of
future energy consumption scenarios, infrastructure adaptation and the development
of strategies to mitigate the negative effects of climate change on energy systems.
Machine learning for water resources management.

This topic addresses the use of machine learning to optimize membrane distillation
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10.

11.

12.

processes, enhance the energy efficiency of solar desalination and solve global water
shortage problems through innovative technologies and bioreactors.

Al in renewable energy sources.

This topic involves the application of Al to optimize, predict and integrate renewable
energy sources, such as solar, wind and geothermal, into energy systems. The focus is
on enhancing the performance of geothermal heat pumps and developing predictive
models for energy management and grid interactions.

Energy transition and decarbonization through innovative technologies.

This topic focuses on reducing the carbon footprint across various sectors, including
construction, energy and transportation, while transitioning to a low-carbon economy
through the integration of renewable energy sources and innovative technologies. It
encompasses the use of blockchain, Al and cyber-physical systems (CPSs) to manage
energy consumption and promote sustainable development. Additionally, it includes
an analysis of economically feasible energy investments.

Carbon footprint of large Al language models.

This research focuses on the carbon footprint of large language models and explores
potential strategies for reducing it.

Post-combustion carbon capture and its optimization through multi-objective opti-
mization (MOE).

The application of machine learning to optimize post-combustion carbon capture
(PCCC) technologies encompasses enhancing the energy efficiency of carbon capture
processes, reducing emissions and integrating PCCC into industrial processes.
Climate change mitigation through Al

This theme focuses on strategies to reduce carbon emissions, enhance energy efficiency
and promote sustainable practices across various sectors. It emphasizes the integration
of energy-efficient technologies, the modernization of infrastructure and the use of Al
to monitor climate impacts and adapt to climate change. Additionally, it includes the
monitoring and mitigation of ocean acidification.

Social, economic and political aspects of energy management.

The topic examines the role of public policies in promoting renewable energy, re-
ducing emissions and supporting sustainable development in the energy sector, as
well as government regulation and policies for energy transition. It includes pro-
grams to reduce energy consumption, rewards for energy savings and an analysis of
the impact of policy decisions on sustainable development and the UN Sustainable
Development Goals.

In Table 2, the distribution of sources by important topics (key research questions) and

years is presented.

Table 2. Thematic analysis by years.

Summary 2024 2023 2022 2021 2020

The impact of AI and ML on energy efficiency

Sustainable construction and green technologies using Al and ML

to enhance the energy efficiency of buildings. 4 10 8 8 ? ?
Enhancing energy efficiency in transportation and e-mobility. 12 3 1 1 7 0
Al in sustainable production and industrial automation. 22 6 8 2 4 2
Energy efficiency in smart grids. 17 7 4 2 4 0
Climate change forecasting and adaptation of energy systems to o7 8 5 5 6 3
climate change.

ML for water resources management. 19 7 4 1 5 2
Al in renewable energy sources. 21 7 5 5 2 2
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Table 2. Cont.

Summary 2024 2023 2022 2021 2020

The impact of AI and ML on climate change.

Energy transition and decarbonization through

innovative technologies. 19 8 > 3 2 !
Carbon footprint of LLM. 10 5 2 1 0 2
Post-combustion carbon capture. 8 4 3 0 0 1
Mitigating the effects of climate change with the help of AL 11 5 3 2 1 0
Policy and regulation.

Social, economic and political aspects of energy o7 8 5 5 6 3

consumption management.

Total

Source: compiled by authors.

3.1. Sustainable Construction and Green Technologies Using Al and ML to Enhance the Energy
Efficiency of Buildings

As indicated in the literature survey, sustainable building and the implementation
of green technologies using artificial intelligence and machine learning have emerged as
the most significant research topics in the face of global climate change over the past five
years. Al and ML technologies have been actively applied to develop energy prediction
and optimization models, particularly in urban areas, where urbanization and phenomena,
such as the urban heat island effect (UHI), necessitate solutions to enhance thermal comfort
and reduce energy consumption. The combination of physical simulation and Al can
accurately predict energy consumption under various climate scenarios, which not only
improves energy efficiency but also contributes to increase indoor thermal comfort [27].

A key challenge of sustainable building research is the application of ML and multi-
criteria optimization methods to enhance the energy performance of buildings and reduce
their carbon footprint, particularly in the context of climate change and urbanization. In
recent years, artificial intelligence (AI) and optimization (ML) have been actively utilized
to create models for predicting and optimizing energy consumption, especially in urban
areas affected by the urban heat island effect (UHI) and climate change.

3.1.1. Modeling and Forecasting

A study [28] emphasizes the significance of modeling heating, ventilation and air
conditioning (HVAC) systems using neural networks to enhance the energy efficiency
and comfort of buildings. The utilization of Al-based models enables the prediction of
HVAC system performance and their adaptation to specific environmental conditions,
resulting in a significant reduction in energy consumption. Additionally, in study [29],
the application of machine learning models for weather forecasting and the design of
energy-efficient building structures is explored, highlighting the creation of sustainable
urban environments capable of withstanding climate change.

Furthermore, study [30] analyzes mechanical cooling in high-rise buildings, demon-
strating that the application of ML to model climate conditions can improve the energy
efficiency of ventilation systems and promote energy savings. Study [31] highlights the con-
siderable potential of Al to manage variations in climate scenarios by predicting the future
energy demands of buildings and facilitating their adaptation to changing conditions.

Particular attention is given to optimizing heat transfer and enhancing comfort in
buildings. The use of advanced machine learning techniques, such as CNN-LSTM, effec-
tively simulates the thermal dynamics of buildings and optimizes HVAC systems, resulting
in a reduction of energy consumption from 15.7% to 22.3% [10]. Additionally, study [32]
investigates gradient boosting models, including LightGBM, CatBoost and XGBoost, which
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provide accurate predictions of energy consumption in office buildings, offering optimal
solutions for improving energy efficiency.

Work [33] highlights the significance of machine learning in predicting thermal loads
in residential buildings. This aids in reducing energy consumption and improving the
sustainability of energy management systems. Also, study [34] indicates that the more Al
and IoT devices are deployed in energy-intensive sectors of the economy, the higher their
energy efficiency becomes. Study [35] explores a hybrid strategy that integrates Al with
modeling tools, such as EnergyPlus™, to forecast annual cooling energy consumption. This
study offers a practical guide for reducing cooling costs by analyzing building materials
and design solutions.

3.1.2. The Use of Digital Twins

Digital twins and the Internet of Things (IoT) play a key role in predicting and op-
timizing the energy efficiency of buildings. These technologies facilitate the real-time
monitoring and management of energy systems, contributing to a more sustainable and
environmentally friendly urban environment [11]. The use of digital twins allows for the
integration of real-world data to enhance operational efficiency and reduce energy costs,
representing an important step towards the environmental sustainability of buildings.

The application of digital twins and the Internet of Things (IoT) offers unique oppor-
tunities for the real-time monitoring and control of energy systems, leading to improved
heat management and enhanced energy efficiency in buildings [14].

Digital twin and predictive models, such as LSTM and the Kalman filter, play a crucial
role in accurate energy consumption prediction through the processing of time series data
and optimization of energy processes [36]. The use of machine learning algorithms and
the Petri Net control system allows the thermal energy efficiency of vertical and horizontal
building envelopes to be achieved [37]. These technologies provide new opportunities
for sustainable building, particularly in the face of uncertainties associated with climate
change [38].

Research underscores the significance of utilizing digital twins and autonomous
machine learning agents to manage the energy consumption of buildings in the face of
unpredictable environmental changes. Specifically, the work in [39] highlights that adaptive
systems capable of learning from real-world data can substantially enhance the energy
efficiency of buildings. These methodologies are illustrated in work [37], which employs
machine learning and a Petri Net-based control system to optimize thermodynamic param-
eters of buildings, including the window type and insulation selection.

The utilization of digital twins and multi-criteria optimization enables the more ac-
curate modeling of the energy performance of buildings, providing effective solutions for
enhancing their energy efficiency [40]. These technologies contribute to the creation of
adaptive and resilient systems capable of responding effectively to variations in climatic
conditions while minimizing energy consumption, although delaying their implementation
may result in multi-billion-dollar losses [41].

3.1.3. Green Technologies and Ecological Materials

The development of sustainable construction and the implementation of green tech-
nologies aimed at enhancing the energy efficiency of buildings have become crucial compo-
nents in the battle against climate change. Key research areas encompass a broad spectrum
of topics, ranging from the physical modeling of buildings to the application of artificial
intelligence and machine learning for predicting and optimizing energy consumption.

A study [42] investigates the application of Al in designing green buildings within
healthcare facilities, emphasizing the selection of environmentally friendly materials and
energy consumption optimization during the operational phase. Techniques, such as
random forests and ant colony optimization, highlight the increasing interest in automated
energy and material management systems in the construction industry.
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Work [43] investigates green building techniques, including the use of recycled and
advanced materials, as well as the life-cycle optimization of buildings through simulation
and Al to reduce overall energy consumption and minimize the environmental impact. A
key focus of this study is the application of phase change materials (PCMs) and hybrid
cladding to decrease energy consumption for heating and cooling. An example includes a
hybrid system composed of 10% polycarbonate and 90% aluminum, which demonstrates
improved energy efficiency compared to using pure aluminum or polycarbonate [44].

Moreover, digitalization is crucial across all phases of the building life cycle, from
design to operation, which is especially significant for developing countries [14]. This
underscores the importance of employing Al and ML to enhance the energy efficiency of
buildings in the context of climate change.

The utilization of adaptive materials, such as aerogels, is increasingly recognized as a
significant factor in enhancing the thermal performance of buildings. A study [45] explores
the uncertainties associated with the use of these materials in subtropical climates. In
particular, the application of machine learning to optimize the thermal performance of
buildings highlights the necessity of adapting materials to changing climatic conditions in
order to improve energy efficiency.

Therefore, the application of green technologies, Al and adaptive materials, such
as phase change materials (PCMs) and aerogels, along with digital technologies and ma-
chine learning, contributes to enhancing the sustainability of buildings, reduces energy
consumption and minimizes their carbon footprint [46].

3.1.4. Passive Energy Efficiency Measures

Passive building design strategies, including bioclimatic approaches and the incorpora-
tion of natural ventilation, continue to be important components of sustainable construction.
However, in the context of a changing climate, there is an urgent need to develop more
precise models that can adapt to varying weather conditions, thereby enabling the more
effective utilization of passive elements [15]. This underscores the necessity of integrating
artificial intelligence to predict climate risks and optimize passive solutions.

Studies [38] highlight the significance of such passive measures, such as thermographic
and building life cycle optimization, within the framework of Near Zero Energy Build-
ings (NZEBs). The application of Al aids in predicting future energy consumption and
optimizing energy management, which is crucial for minimizing energy loss.

Study [47] examines the application of Al and thermography to assess heat loss
through building envelopes. The utilization of drones and infrared cameras enables the
identification of heat-loss areas, facilitating the development of targeted strategies to
enhance energy efficiency.

Additionally, a study [48] investigates the application of machine learning algorithms
to analyze the thermophysical performance of ventilated facades (VFs) and predict heat
fluxes. This research underscores the significance of machine learning in modeling building
behavior under varying temperature and structural parameters, thereby contributing to
the development of more accurate and adaptive energy-consumption models.

Therefore, the integration of Al and ML with passive measures, such as bioclimatic
design, thermography and building life cycle optimization, is essential for enhancing
energy efficiency and building resilience in the face of a changing climate.

3.1.5. Ventilation Systems and Al

The application of artificial intelligence and big data to optimize ventilation systems
and predict energy consumption has emerged as a key area of research aimed at reducing
the carbon footprint of buildings and enhancing their sustainability [49]. Optimizing
ventilation systems is particularly important for sustainable construction in the context
of a changing climate. A study [50] illustrates the use of machine learning models to
forecast the cooling load and energy consumption of buildings, enabling an evaluation
of the effectiveness of various ventilation management strategies in high-rise structures.
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The findings indicate that employing optimal ventilation systems can significantly enhance
energy efficiency, particularly during transitional seasons.

Mechanical ventilation and air conditioning systems constitute over half of the energy
costs associated with buildings [51], and climate change is exacerbating this issue by
intensifying the connection between rising greenhouse gas emissions and fluctuating
weather patterns. One effective approach is to incorporate passive measures, particularly
in regions with hot climates. However, the variability of climate conditions necessitates
the adaptation of these measures to optimize the utilization of natural resources, such as
daylight and natural ventilation. This highlights the importance of effectively managing
building systems to regulate their performance.

Therefore, the integration of artificial intelligence, big data and passive measures
can enhance the energy efficiency of ventilation systems while simultaneously adapting
buildings to the impacts of climate change. This holistic approach ultimately contributes to
a significant reduction in their carbon footprint over the long term.

3.1.6. Carbon Footprint of Buildings and Structures

A significant challenge in the context of sustainable development is the substantial
contribution of buildings to global energy consumption and greenhouse gas emissions.
Buildings account for up to 50% of global energy consumption and around 30% of green-
house gas emissions, highlighting the urgent need to enhance their energy efficiency to
achieve sustainable development goals [52]. The application of artificial intelligence and
machine learning to predict energy efficiency, both at the individual building level and
across urban areas, has emerged as a crucial strategy for solving these issues. Research in-
dicates that accurately predicting energy consumption requires taking into account climate
change factors and the functional characteristics of buildings [53].

Despite advancements in Al applications, the prediction of energy efficiency at the city
level remains insufficiently explored, particularly regarding the interactions among vari-
ous spatial functions and climate scenarios [52]. Modern research indicates that machine
learning (ML) and artificial intelligence (Al) can significantly enhance energy consumption
management and reduce the carbon footprint of buildings. For instance, in smart and
energy-efficient buildings (SEEs), ML-based control systems allow thermal comfort and
energy consumption to be effectively balanced [54]. Prediction models utilizing ML and
genetic algorithms can improve the energy efficiency of existing buildings by analyzing
historical data [55], including taking into account climate change forecasting [56]. Addi-
tionally, the application of multi-criteria optimization techniques for assessing the thermal
performance of buildings further underscores the critical role of Al in adapting structures
to shifting climatic conditions [57].

A significant innovation in building energy management is the application of artificial
intelligence (Al) and cloud technologies to automate energy consumption processes, for
example, using time series data [58]. These systems not only optimize energy consumption
but also identify anomalies, producing tailored reports for various stakeholders [59]. This
integration contributes to more efficient energy utilization and a reduction in carbon
emissions [60].

Building life cycle optimization techniques that leverage artificial intelligence (AI) and
digital technologies are employed to minimize the overall environmental impact, including
energy consumption and carbon emissions, at every stage of the life cycle—from design to
operation and disposal [40]. These approaches are crucial for achieving sustainability in
the construction and operation of buildings, which is particularly important in the context
of global climate change.

3.1.7. Adaptation of Buildings to Climate Change

Other studies focus on the adaptation of buildings to specific climatic conditions. For
example, the use of XGBoost and genetic optimization algorithms, due to their ability
to accurately predict building performance with respect to multiple parameters, such as
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thermal comfort, energy efficiency, structural parameters and daylight levels, helps to
improve thermal insulation and natural lighting in tropical regions. It highlights the need
of climate-adapted solutions to improve building energy efficiency [61].

XGBoost, learned from historical data, provides high accuracy in modeling the build-
ing response to different climatic conditions, allowing for the adaptation of design solutions
to the specific weather conditions of the tropical region. As a result, the combined applica-
tion of XGBoost and genetic optimization allowed for the creation of an integrated structure
capable of adapting and improving design solutions, as confirmed by the high R? values
(0.95 for point blocks and 0.87 for slab blocks). The above indicates the high predictive
accuracy of the models adapted to tropical climatic conditions.

The adaptation of building management systems to changing climatic conditions is
also an important area of research. For example, the use of machine learning to predict
thermal loads and model thermodynamic characteristics of buildings helps to significantly
reduce their energy consumption [62]. Predicting changes in climate conditions using
explainable Al and adapting control systems to these changes are found to be important
for maintaining energy efficiency [63].

Research also highlights the importance of reliability, safety and climate change adap-
tation in building design, which reinforces the importance of implementing Al to effectively
manage these factors [54]. Optimizing the energy efficiency of buildings in the face of
climate change becomes a key challenge. For instance, a study [55] introduces an energy-
prediction model that utilizes ML and genetic algorithms to enhance the energy efficiency
of existing buildings based on historical energy consumption and weather data. Similarly,
study [56] emphasizes the need to incorporate climate scenarios in building design to
optimize parameters, such as insulation thickness, to improve their energy efficiency.

Study [63] significantly enhances our understanding of the effects of climate change on
building energy consumption. An explainable AI (XAI) model was employed to predict en-
ergy usage under various climate scenarios, including “business-as-usual” and sustainable
energy transition scenarios. The findings indicate that climate change could substantially
increase cooling energy costs, underscoring the need for adaptation measures to mitigate
adverse economic and environmental consequences.

Thus, studies emphasize the important role of applying Al and ML to predict climate
change and adapt building systems, ensuring buildings resilience in a changing climate [61].

3.1.8. Energy Efficiency and Thermal Comfort

The optimization of heating, ventilation and air conditioning (HVAC) systems through
the application of neural networks facilitates an effective balance between energy savings
and the maintenance of thermal comfort within buildings [28]. Adaptive Al systems that
can learn from real-world data are crucial for the development of sustainable buildings in
the future, as they can automatically adjust HVAC parameters in response to fluctuations
in the external environment and evolving user needs [39].

Research [54] focuses on modern control systems for smart and energy-efficient build-
ings (SEEs), where the balance between minimizing energy consumption with the mainte-
nance of comfortable indoor temperatures is a central concern. Machine learning techniques,
including supervised, unsupervised and reinforcement learning methods are actively em-
ployed to achieve this balance.

The integration of physical simulation and artificial intelligence to predict energy consump-
tion across various climate scenarios not only facilitates the optimization of energy costs but
also enhances the thermal comfort level within buildings [27]. For instance, precise predictions
derived from Al models enable better adaptation of indoor conditions to a changing climate,
thereby maintaining comfort while reducing cooling and heating expenses.

The study conducted by [62] highlights the significance of selecting optimal parameters
for window structures, which allows for improving thermal insulation and subsequently
reduces energy consumption while maintaining a comfortable indoor temperature. This
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underscores how contemporary machine learning techniques contribute to developing
energy-efficient solutions that balance resource conservation with user comfort.

3.1.9. Energy Efficiency of Buildings in the Context of Sustainable Development and
Financial Efficiency

The trend of utilizing artificial intelligence to predict and optimize energy consumption
is steadily gaining momentum. However, the slow adoption of these technologies may
result in substantial economic losses, underscoring the importance of expediting their
integration into the construction industry [41]. The implementation of energy-efficient
solutions is increasingly recognized not only as an environmental necessity but also as an
economically reasonable step for sustainable development.

A study [49] investigates the challenges and opportunities associated with the ap-
plication of big data, artificial intelligence (AI) and Internet of Things (IoT) technologies
to enhance the energy efficiency and sustainability of buildings in Europe. The research
highlights the need for technology integration to meet the requirements of policy, business
and technology, emphasizing the importance of coordinating these elements for a successful
transition to sustainable building practices.

Particular emphasis is placed on the role of digitalization and the application of artifi-
cial intelligence (AI) throughout all stages of the building life cycle from design to operation
and renovation, which is especially important for developing countries [14]. Digital tech-
nologies, such as Building Information Modeling (BIM) and Building Management Systems
(BMS), can significantly enhance resource efficiency and minimize the environmental im-
pact. These technologies are increasingly recognized as an important element of sustainable
construction, providing both economic advantages and reductions in the carbon footprint.

The integration of Al and the ML into the design and operation of buildings not only
improves energy efficiency but also increases resilience to climate change, positioning these
technologies as essential components of the future building industry. Nevertheless, there is
still a need for further investigation of the practical aspects of their integration, as well as
an assessment of their long-term economic impacts and contribution to sustainable urban
development [64].

Current research demonstrates that green technologies and sustainable construction
play an important role in the face of climate change. For instance, study [61] proposed an
integrated platform for predicting and optimizing the performance of residential build-
ings in tropical climates, utilizing machine learning (XGBoost) and genetic optimization
algorithms. Particular attention is paid to improving thermal insulation and optimizing
the use of natural light, which confirms the importance of adapting building materials and
structures to improve energy efficiency.

A study [41] highlights the economic importance of the rapid implementation of
energy-efficient technologies. Delayed implementation could result in billions of euros
in lost opportunities and additional expenses linked to rising energy consumption. This
underscores the necessity of actively utilizing Al and digital solutions to reduce costs and
enhance resilience in the face of a climate change.

3.2. Improving Energy Efficiency in Transport and e-Mobility

This topic encompasses a broad spectrum of issues, ranging from optimizing energy
consumption in transportation systems to developing infrastructure for charging electric
vehicles. A key area of research is the application of artificial intelligence and machine
learning to enhance the energy efficiency and safety of vehicles, particularly in hybrid and
autonomous transportation systems.

Studies indicate that one of the most promising areas is the use of Al to predict vessel
arrival times (ETA) in maritime logistics, which contributes to reduce greenhouse gas
emissions and improves energy efficiency in international transportation [65]. Optimizing
the energy efficiency of shipping and minimizing the carbon footprint are key priorities
in this field. A study [66] highlights the use of big data and machine learning to enhance
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fuel efficiency in large ships, marking a step towards more sustainable transportation
solutions. Similar approaches are also applicable to land transportation, particularly for
electric vehicles and hybrid systems.

The application of machine learning is being actively utilized to enhance the energy
efficiency of vehicles. A study [67] indicates that intelligent transportation systems have the
potential to reduce CO; emissions by 60%. Specifically, Al can optimize fuel consumption
in hybrid transportation systems, leading to significant reductions in energy costs and
improved environmental performance, and this allows for the more efficient use of un-
manned aerial vehicles [68]. Research [69] focuses on developing a machine learning-based
hybrid architecture to predict the battery health of electric vehicles, which is crucial for
extending battery life and optimizing energy consumption, ultimately resulting in more
efficient electric vehicle operation. This approach is also being explored in transportation
logistics, where Al helps to optimize routes and forecast energy consumption [19].

Studies also demonstrate the significant role of electric vehicles in urban energy strate-
gies. The adoption of electric vehicles helps to reduce energy consumption and carbon
dioxide emissions, which is crucial for sustainable urban development [70]. Furthermore,
research, such as [71], explores the broader integration of Al and IoT into the urban in-
frastructure, where smart systems can optimize energy management in transportation,
contributing to more sustainable cities. Additionally, the energy-demand analysis in the
study by [72] highlights key aspects of managing energy demand in the transportation sec-
tor. As energy demand for charging electric vehicles increases, efficient energy management
becomes essential to prevent overloading the power grid.

Study [73] utilizes machine learning to map the drivetrain efficiency of electric vehicles,
enhancing energy management and predicting energy efficiency. This helps to improve
energy management and predict energy efficiency, contributes to reduced fuel costs and
accelerates the shift towards more sustainable transportation solutions. Additionally, the
use of Al and ML to predict and optimize thermal and cooling loads in electric vehicles
further improves their energy efficiency and reduces operating costs.

The safety of autonomous vehicles, alongside their energy efficiency, is another crucial
area of research. Al technologies have been applied to enhance the safety management of
autonomous vehicles, improving their reliability and reducing the likelihood of accidents
by better predicting critical situations [74].

Thus, key trends in improving energy efficiency in transport include the application
of Al and machine learning to optimize energy consumption in both land and maritime
transportation systems, as well as expanding the use of electric vehicles in cities as a tool
to achieve energy sustainability. Additionally, there is an increasing focus on developing
charging infrastructure and the management of transport networks powered by renewable
energy sources.

3.3. Al in Sustainable Manufacturing and Industrial Automation

The integration of artificial intelligence in industrial automation and sustainable
manufacturing is becoming a crucial strategy for optimizing production processes, reducing
energy consumption and minimizing carbon footprints. The implementation of Al enables
predictive maintenance and energy consumption management and fosters automation,
leading to increased productivity and sustainability across various industrial sectors.

A key focus area is the implementation of Al for predicting and optimizing energy
consumption. For instance, machine learning is employed to enhance energy-consumption
efficiency in logistics and industrial settings, aiming to minimize carbon footprints and
optimize resource utilization [75]. However, a study [76] showed that R&D expenditures
are only effective in reducing CO, in low-CO,-emitting countries, and conversely, patent
applications contribute to higher CO, emissions.

Studies emphasize the importance of using Al to manage energy consumption in
manufacturing processes to improve sustainability and efficiency [77]. In addition, Internet
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of Things (IoT) and Al technologies can significantly improve automation in industrial
buildings, leading to lower energy costs and improved overall energy efficiency [34].

The application of Al significantly reduces energy intensity by optimizing production
processes and minimizing energy consumption [78]. Economies of scale are also crucial:
large enterprises that have integrated Al technologies achieve higher economic efficiency
and reduce energy intensity, highlighting the potential of Al to enhance the sustainability
of industrial production. However, reliable methods suitable for all levels of production
have not yet been sufficiently developed [79].

In addition to industrial enterprises, Al enhances household energy management
through the implementation of home energy management (HEM) systems [80]. These
systems optimize energy usage by employing advanced meta-heuristic algorithms, such as
Social Spider Algorithm (SSA) and Strawberry Algorithm (SWA), which effectively reduce
energy costs and peak loads.

Al also plays a crucial role in managing carbon dioxide emissions in the industrial
sector. Specifically, Al technologies are utilized to monitor and control CO, emissions,
which contributes to the achievement of carbon-footprint-reduction targets [81]. Further-
more, Al plays an important role in the integration of industrial systems with renewable
energy sources, enabling the optimization of resource allocation and real-time energy
management [82], which contributes to environmental sustainability [83].

The transportation industry remains a major source of emissions, which requires the
implementation of intelligent systems to improve energy efficiency. Since 2016, with the
increasing popularity of deep learning, 219 patents focused on energy management, sus-
tainable driving and behavior optimization applied, of which more than 70% are registered
in China [84].

Research indicates that Al can substantially reduce inefficient energy usage, for in-
stance, by automatically adjusting equipment operation depending on demand levels [85]
or fuel economy in the maritime industry [86]. Conscious energy utilization enhanced by
Al mechanisms [87] promotes sustainable development by helping businesses reduce their
carbon emissions and increase the environmental responsibility of enterprises [88].

One promising area is the application of Al in agriculture to enhance the sustainability
and energy efficiency of agricultural production. In this sector, Al facilitates the opti-
mization of resource consumption, improves harvesting processes and enhances irrigation
management, ultimately reducing the carbon footprint and increasing the environmental
sustainability of agricultural production [89]. Additionally, Al is employed to optimize
production processes and reduce energy costs, thereby increasing the sustainability and
productivity of agribusinesses. Al technologies can automate processes related to the
management of agricultural resources, improving their efficiency and minimizing environ-
mental impacts, including through post-combustion carbon capture [90].

Predictive maintenance is emerging as one of the key application areas of Al in the in-
dustrial sector. Specifically, Al allows industrial enterprises not only to automate processes
but also to implement predictive maintenance systems, which significantly reduces repair
costs and extends equipment lifespan, as well as buildings [91]. In this context, predictive
analytics is extensively employed to detect potential breakdowns in advance, thereby
avoiding costly downtime [75]. Consequently, this approach enhances the resilience of
industrial systems while also contributing to reductions in energy consumption.

A particular area of research is the application of Al to enhance resource efficiency in
manufacturing systems. This encompasses both material usage optimization and waste re-
duction, resulting in leaner and more environmentally responsible production practices [75].
Furthermore, Al facilitates the development of intelligent control systems that adapt to
changing production conditions and automatically adjust processes to achieve maximum
efficiency [92].
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3.4. Energy Efficiency in Smart Grids

The application of artificial intelligence and machine learning has emerged as a crucial
element in enhancing energy efficiency within smart grids. Key components include real-
time demand forecasting and management, the integration of distributed energy resources,
such as solar and wind power, and process automation, all of which are essential for the
advancement of smart grid technology.

Artificial intelligence plays a key role in optimizing energy consumption within
smart grids, improving power system management through real-time demand forecasting
and increasing grid resilience. For instance, the application of Al techniques, such as
machine learning and data analytics, allows for more precise predictions of energy demand
and enables immediate responses to fluctuations in the load, thereby reducing costs and
improving the efficiency of power systems [93].

An important aspect of the efficient integration of renewable energy sources into smart
grids is the ability to predict their power output. Study [4] examines various methods
for predicting solar radiation and photovoltaic (PV) power using machine learning and
deep learning techniques. These methods aim to reduce uncertainty and improve energy
management within smart grids. Demand-side management techniques combined with
machine learning also help to optimize the operation of distributed energy sources, such as
solar panels and wind turbines, thereby increasing the share of renewable energy sources
within the overall energy system [94]. Artificial intelligence is employed to manage dis-
tributed energy resources, enabling efficient predictions of energy intensity and optimizing
the utilization of renewable sources, like solar and wind energy [95]. A study [96] inves-
tigates the integration of distributed energy sources, such as solar panels, utilizing Al to
effectively manage energy consumption and distribution within a proposed nanogram and
microgrid architecture, thereby improving system stability.

Machine learning techniques, such as the Multivariate Temporal Fusion Transformer,
enhance the accuracy of energy-demand forecasting [9]. This forecasting accuracy is
essential for optimizing energy flow management, particularly for variable energy sources
like solar installations.

The Internet of Energy (IoE) plays a crucial role in smart grids, allowing devices
and systems to be connected to monitor and manage energy consumption. A study [97]
investigates the combined application of IoE and ML to optimize energy-consumption
management and enhance the overall energy efficiency of the grid. This includes load
forecasting, system state monitoring and the automation of energy consumption manage-
ment processes.

Carbon forecasting is increasingly recognized as a vital component of smart grids, as it
impacts investment decisions and risk management. Real-time forecasting and distributed
sources energy management significantly reduce carbon emissions and contribute to the
development of sustainable energy infrastructure [93]. A study [98] employs machine
learning to predict the carbon emissions of corporations, enabling investors to make more
informed decisions in response to emerging environmental regulations.

The focus of research is on energy-demand management and the development of
cost-effective models for smart grids. A study [99] proposes a blockchain and artificial
intelligence-based “cap and trade” model for demand management, utilizing Al to incen-
tivize consumers to save energy. This is accomplished by introducing a system of energy
credits that can be traded if energy consumption remains below a specified limit. Intelligent
Al algorithms, such as predictive analytics and optimization algorithms, enable power
grids to efficiently allocate resources and manage electricity demand and consumption,
thereby minimizing peak loads and ensuring grid stability [100]. Additionally, a study [101]
presents an open-access decision support system (NESSI) for energy consumption and
generation planning at both the household and neighborhood levels. This system uses Al
and machine learning to calculate and optimize energy consumption and forecast demand.

The utilization of Information and Communication Technology (ICT) platforms for
energy consumption management in buildings is emerging as a significant trend within
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smart grids. ICT platforms enable the collection and processing of massive amounts
of data in real time, which is critical to accurately monitor, analyze and predict energy
consumption. ICT platforms provide smart grids with the analytics they need to respond
instantly to changes in demand and manage loads to prevent congestion and improve the
efficiency of energy distribution. A study [77] provides a real-world example of an ICT
platform employed to predict and optimize energy consumption, leveraging data collected
from sensors in smart buildings. This approach results in enhanced energy efficiency
and sustainability.

Internet of Things (IoT) technology facilitates real-time data collection and processing,
thereby enabling the automation of energy management processes both at the micro-grid
level [102] and at the level of smart energy infrastructure in general [103]. A study [104]
demonstrates the potential of utilizing IoT data to predict peak energy demand and op-
timize energy consumption across various types of buildings. This capability enhances
energy management flexibility and reduces the overall load on the grid.

As a result of the conducted research, the following most effective methods for man-
aging distributed energy resources (DER) can be identified:

1.  Using Al to predict and optimize DERs. Methods, such as Temporal Fusion Trans-
former, improve forecasting accuracy, which is especially important for DERs with
variable capacity, such as solar and wind installations. High-quality forecasts mini-
mize load peaks and improve grid stability.

2. Demand management using Al and blockchain. Demand management allows users
to adjust energy consumption based on grid conditions and helps prevent grid con-
gestion, especially during periods of high demand, by economically incentivizing
users to reduce consumption. Thus, DER owners can adapt consumption and even
offer surplus energy to the market.

3. IoE and IoT for monitoring and managing DER. IoE and IoT devices collect data in
real time, allowing for rapid monitoring of the network status and when using Al
together, automatically adjust energy consumption.

4. ICT platforms for data collection and analysis in smart grids. ICT enables the collection
and processing of large amounts of real-time data from DERs, which is critical for
accurate demand management and prediction.

5. Microgrids and nano-grids allow DERs to operate autonomously, providing energy
to the local community or sites, while being able to connect to the main grid for
additional flexibility.

3.5. Climate Change Forecasting and Adaptation of Energy Systems

Current research increasingly employs mathematical models and machine learning
to predict the impact of climate change on energy systems. These technologies enable the
consideration of various climate scenarios, facilitating assessments of future energy needs
and potential risks [105]. Mathematical models and machine learning make it possible not
only to predict but also to optimize energy systems by developing adaptive algorithms that
dynamically adjust energy strategies, taking into account changing climate conditions in
real time.

For instance, the application of machine learning techniques, such as multi-criteria
optimization and Explainable AI (XAI), enables the assessment of the impact of various
climate scenarios on energy consumption in buildings and the development of adaptation
strategies [106], which is important for understanding and informing decisions to reduce
climate risk.

Additionally, ref. [107] discusses the use of machine learning-based models and dynamic
panel estimation to manage nonlinear and chaotic systems related to climate vulnerability and
energy infrastructure. Taking into account non-linear relationships between climate factors and
energy consumption helps to improve the accuracy of long-term forecasts.

A significant area of research is the adaptation of infrastructure to the new conditions
brought about by climate change [108]. Study [39] explores building adaptation through
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the use of Al and digital twins to predict changes in climate conditions and adjust energy
systems accordingly. Meanwhile, [50] focuses on forecasting changes in building cooling
loads and energy consumption to develop long-term adaptation strategies and optimize
the energy system infrastructure in response to climate change. Research indicates that
employing climate models and optimization techniques can lead to a reduction in energy
consumption in buildings by up to 54% when adapting to the climate change scenario
SSP585 [27]. Additionally, studies [109] concentrate on regional approaches to adapting
energy systems to climate change, which confirms the growing overall interest in the impact
of climate change on energy systems that has been observed in recent years [110]. There are
also investigations into the adaptation of energy systems in arid regions, where increased
energy consumption necessitates the implementation of sustainable and energy-efficient
solutions [44].

The use of machine learning not only makes it easier to predict energy demand but also
takes into account changes in the structure of electricity demand. For instance, electricity
demand forecasting employing techniques, such as Blade Element Momentum (BEM) and
Explainable Al enables the prediction of changes in energy consumption depending on
weather conditions and adapting energy systems to minimize losses [111]. Furthermore,
a study [112] reveals the adaptation of energy systems to climate change through fault
detection in the power electronic circuits of the wind turbine system, allowing it to adjust to
changing demand in the face of population growth and increasing extreme weather events.

Research underscores the necessity of developing strategies to minimize the negative
consequences of climate change on energy systems. The integration of Al and quantum
computing technologies is enhancing the resilience of energy networks, improving the
management of renewable energy and reducing carbon emissions and carbon dioxide
removal (CDR) [113]. These advanced technologies facilitate the development of strategies
that enable energy systems to adapt to evolving conditions and maintain stable operations
amidst climate uncertainties.

A crucial area of research is the development and implementation of climate-resilient
solutions for urban and industrial systems [31]. Forecasting climate change and its ef-
fects on urban infrastructure is essential for creating climate-resilient cities that can adapt
to changing conditions and minimize adverse impacts on energy systems [114]. Such
strategies encompass the integration of smart grids and renewable energy sources, which
contribute to enhanced energy consumption efficiency and a reduction in carbon emissions.

3.6. Machine Learning for Water Resource Management

The use of Intelligent Energy Monitoring Systems (IEMSs) to manage glacial ecosystems
demonstrates how machine learning (ML) and artificial intelligence (AI) can be powerful
tools in managing water resources in the face of climate change [115]. IEMS applies remote
sensing technologies, sophisticated sensors and ML algorithms to track real-time changes,
which opens up opportunities to better understand and conserve glacial ecosystems.

Approaches to improving energy efficiency in the shipping industry based on behav-
ioral change and operator involvement provide meaningful insights for the application
of Al and ML in water resource management [116]. The use of autonomous ML-based
systems for data collection and analysis in the shipping industry will overcome the lack
of standardization, enabling more informed decisions and optimizing the use of limited
water resources.

One of the primary applications of machine learning in water resource management
is the optimization of membrane distillation processes [85]. Studies show that ML, which
optimizes key system parameters and forecasts its behavior with high accuracy, can be used
to improve the accuracy of performance forecasting of membrane distillation processes.
It helps to reduce energy costs and improve desalination efficiency [117]. Also, machine
learning algorithms help to accurately model water flow, forecast pollution and take
into account the impact of micropollutants on the treatment and desalination process.
Modern technologies make it possible to improve membrane material selection, automate
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water quality control, optimize distillation processes and minimize energy consumption.
The use of Al and machine learning helps to minimize the amount of data required for
process modeling and optimizes the tuning of system parameters, which increases the
interpretability of models and process stability [118].

Machine learning (ML) contributes to the optimization of solar desalination systems
by reducing energy consumption and increasing the water production volume [96]. Specifi-
cally, ML has been employed to predict and optimize the performance of solar membrane
desalination systems, in order to minimize energy consumption through the more precise
selection of system parameters [117].

Machine learning is also actively employed to address global issues related to water
scarcity. The use of Al and machine learning for energy consumption management in the
textile industry provides useful approaches for optimizing water resources [119]. Innova-
tive technologies, such as bioreactors [120] and solar-powered water purification systems,
are being improved through machine learning algorithms that help minimize energy con-
sumption and improve productivity [121], particularly within water treatment systems,
which is crucial for regions facing water shortages. Study [122] examines the use of IoT
and machine learning for monitoring ocean acidity, while [123] explores the application of
artificial intelligence and big data for water resource monitoring through the use of sensors
on the plants, which helps manage water resources as part of global initiatives.

Machine learning not only facilitates the optimization of treatment processes but also
aids in predicting water resource demand. By analyzing data on climate, demographics
and water consumption, accurate forecasts are generated to help the development of
effective water management strategies. This capability is particularly significant for both
industry and agriculture, as precise predictions can help minimize water losses and enhance
planning efforts [124]. Additionally, [125] describes innovative technologies for water
consumption monitoring that employ wireless systems and optical sensors, which can be
integrated with ML to optimize water consumption and management.

3.7. Al in Renewable Energy Sources

One of the key trends in renewable energy is the application of Al to enhance the
efficiency of geothermal heat pumps. Research indicates that Al can help optimize the
performance of these systems through more accurate heat load predictions, real-time data
analysis and automation of controls. The use of machine learning makes it possible to
better predict the output temperatures from heat pumps [126] and regulates temperature
flows [96], thereby improving control mechanisms and reducing operating costs. Addition-
ally, various approaches are being explored to optimize pump parameters to improve their
energy efficiency [127].

Al not only helps in predicting energy consumption but also facilitates the manage-
ment of interactions between the grid and renewable energy sources. The application
of machine learning algorithms enhances the accuracy of energy consumption forecasts,
thereby optimizing the management of energy resources [6]. This capability is particularly
crucial for energy systems operating with variable renewable sources, such as solar and
wind energy [5]. For instance, study [128] explores the processes of the integration of solar
energy into conventional power systems, while another study [129] analyzes the prediction
of solar radiation and the performance of solar panels, including strategies for preventing
panel failures.

Al also plays a crucial role in the integration of various renewable energy sources into
energy networks. Green Al and digitalization moving to low-power peripherals, such as
TinyML, support the efficient management of renewable energy [130]. The application of
Al techniques enhances grid stability, improves energy resource management and reduces
carbon emissions. Studies [131] investigate strategies for incorporating renewable sources,
such as solar and wind energy, into existing urban energy systems. Additionally, the use of
Al in wind energy systems improves power forecasts under varying weather conditions,
thereby increasing the overall stability of the grid [111]. Furthermore, Al technologies



Energies 2024, 17, 5965

20 of 34

enable the real-time management of renewable sources, which reduces the grid load and
improves the interaction between consumers and energy producers [103].

A crucial aspect of applying Al to renewable energy sources is the creation of models
that take into account the instability of natural conditions and assist in predicting energy
output [132]. For instance, wind turbines are influenced by fluctuating weather conditions
and Al can accurately predict how these changes will impact their performance [111].
Additionally, the use of Al for fault detection enhances the reliability and efficiency of wind
energy systems [112]. Al also aids in predicting geothermal resources, enabling a more
efficient utilization of their potential for energy supply [126].

Research indicates that utilizing Al to manage renewable energy sources enhances
the resilience of power systems in the face of climate change and other unforeseen cir-
cumstances. Predictive models developed through Al allow us to assess risks and make
decisions under conditions of uncertainty, thereby improving the stability of the power
system and reducing its dependence from traditional energy sources [22].

3.8. Energy Transition and Decarbonization Through Innovative Technologies

One of the primary challenges of the current energy transition is achieving decar-
bonization through the integration of renewable energy sources (RESs), such as solar, wind
and geothermal energy. For instance, the implementation of smart grids equipped with
Al can enhance the stability of energy systems and minimize energy losses through more
accurate forecasting and resource management [22].

Artificial intelligence (AI) plays a crucial role in managing energy consumption, op-
timizing energy systems and minimizing CO, emissions. The use of machine learning
and big data analytics enables real-time predictions of energy consumption, improves the
energy efficiency of industrial processes and reduces the overall carbon footprint [133].
This is particularly relevant for the electronics industry sector, where optimizing energy
management can significantly reduce emissions [134].

Blockchain technology is actively being investigated as an innovative tool for man-
aging distributed energy sources, fostering transparency and enhancing the security of
transactions within energy systems. For instance, blockchain facilitates the creation of
sustainable energy ecosystems by enabling distributed users to engage in renewable energy
markets REM, thereby promoting the growth of localized clean energy production and
contributing to the reduction in carbon emissions.

Cyber-Physical Systems (CPSs) and Energy Management Automation: CPSs play
a crucial role in optimizing energy resource management, particularly within the trans-
portation and industrial sectors. These systems enable more the efficient utilization of
energy resources and support the transition to sustainable technologies, including the
development of decentralized energy systems [102]. They are actively employed to manage
the integration of renewable sources into energy systems, effectively reducing the carbon
footprint by enhancing the accuracy of control and monitoring processes.

With the energy crisis, in the context of accelerated climate change, conflict in Ukraine
and the past 2019 coronavirus pandemic, carbon emissions are growing rapidly [135],
requiring the use of innovative technologies to reduce these emissions [136].

Artificial intelligence (AI) and machine learning are helping to model investment
scenarios for new energy technologies, such as wind and solar power, and evaluate their
economic and environmental impacts. Research [1] underscores the necessity for eco-
nomically reasonable investments in the energy transition, highlighting the significance
of developing strategies that integrate renewable energy sources that include renewable
energy, which will contribute to the transition to a low-carbon economy.

3.9. The Carbon Footprint of Large Al Language Models

Despite the significant potential of Al and ML in promoting energy conservation, a
critical concern is the high carbon footprint associated with the training and operation of
large language models (LLMs). These models demand substantial computational resources
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and consume considerable amounts of energy [137]. The training of LLMs, especially
for natural language processing tasks, involves the repeated processing of vast datasets,
which significantly contributes to CO, emissions [18]. This presents a challenge for re-
searchers and Al developers in finding ways to minimize environmental losses, despite
the fact that artificial intelligence can support environmental sustainability [138] and solve
environmental problems.

One proposed approach to reducing the carbon footprint of language models is to
adopt more energy-efficient computing architectures and to optimize learning algorithms,
thereby reducing the number of computational operations required [139].

Methods to reduce energy consumption by employing specialized hardware solu-
tions and utilizing renewable energy sources for data center operations are also being
actively explored [19]. Some studies propose integrating green energy and implementing
energy-efficient solutions to support Al computing, which contributes to reducing carbon
emissions [18].

Another important aspect is the use of more energy-efficient hardware for computa-
tional tasks. For instance, some studies suggest the use of hardware accelerators, such as
specialized processors and graphics processing units (GPUs), to reduce power consumption
during the training and implementation of language models [19].

Study [92] highlights that the computational resources required to train and operate
large language models (LLMs) consume substantial amounts of energy, contributing to
carbon emissions. Research indicates that reducing the training time through more ef-
ficient allocation of computational resources can significantly reduce the overall carbon
footprint [138]. This can be achieved by developing new algorithms that can minimize the
number of repetitive operations during the training process.

Work [130] explores the potential of using Green Al technologies to minimize energy
consumption, such as shifting computation from the cloud to edge computing. This
approach can reduce the amount of data transmitted over the network and decrease the
computational demands for training and deploying models.

3.10. Post-Combustion Carbon Capture and Its Optimization Using Machine Learning

Global warming caused by increasing carbon emissions requires immediate action.
Study [140], emphasizes the need to develop global policies with specific targets to stabilize
atmospheric carbon, including low-carbon technologies and improved energy efficiency.

Post-combustion carbon capture (PCCC) is a complex process that requires significant
energy input. The application of machine learning for optimizing these processes is becom-
ing an urgent task, as it can significantly enhance energy efficiency, reduce operational costs
and reduce the carbon footprint of industrial enterprises [2]. Some studies have employed
machine learning to improve modeling and prediction, enabling the precise identifica-
tion of parameters that need adjustment for the optimal performance of carbon-capture
systems [141].

One of the main challenges in implementing post-combustion carbon capture (PCCC)
is its high energy intensity, which reduces its economic efficiency. Machine learning can
optimize CO;-absorption processes by improving process control and minimizing heat loss,
thereby reducing energy consumption. Specifically, machine learning can help identify the
most efficient operating conditions for carbon filters and adsorbents, maximizing carbon
dioxide capture [90].

The successful implementation of carbon capture technologies necessitates their in-
tegration into existing industrial systems, which account for 50% of the world’s energy
consumption [142], such as steel and cement production, which are significant sources of
CO; emissions [143]. In this context, machine learning optimization (ML) plays a crucial role
by predicting how variations in operating parameters impact the performance of carbon-
capture systems. This capability allows for the flexible integration of post-combustion
carbon capture (PCCC) into production cycles without substantial losses in efficiency [113].
Some studies indicate that the application of ML models can not only enhance capture pro-
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cesses but also predict emissions at various stages of the production process, contributing
to a reduced carbon footprint during both the planning and operational phases [90].

Machine learning is also actively applied in the search for new materials and catalysts
that can enhance the efficiency of carbon capture. By simulating the behavior of materials
under various conditions, machine learning optimization (ML) accelerates the discovery of
innovative solutions [140]. This is particularly important in environments where traditional
carbon capture methods require significant energy inputs.

The study shows that the most promising way to improve the economic efficiency of
PCCC using Al and ML are integrated approaches, including the prediction of thermal fluc-
tuations and energy requirements using ML algorithms. It allows for the optimal regulation
of heat exchange and increases the efficiency of heat recovery; the modeling of new sorbents
at the molecular level, analysis and forecasting of their behavior under different conditions,
in order to find materials with the lowest energy requirements; the use of co-generative
materials with the lowest energy requirements; the use in co-generation facilities to manage
the balance between heat production for PCCC and real-time electricity generation; and
other economically feasible methods, including integration of renewable distributed energy
sources and the optimization of energy efficiency of the PCCC process itself.

3.11. Mitigating the Effects of Climate Change with Al

Al plays a crucial role in monitoring climate change and predicting its impacts.
Study [107] explores methods for monitoring climate vulnerability using Al, while [144]
applies Al to analyze vegetation and urban air data to help predict and model the effects of
climate change. These applications help to adapt energy-management strategies, enabling
more accurate predictions and the implementation of targeted climate mitigation measures
for energy systems and other industries [145].

A study [146] explores the use of drones and sensors to monitor climate change.
This technology enables quicker responses to environmental changes and supports the
development of strategies to adapt to evolving conditions.

An important aspect of climate change mitigation is the modernization of infrastruc-
ture with advanced energy-efficient technologies. For example, a study [39] explores the
use of Al to adapt buildings to climate change and enhance their energy efficiency. Addi-
tionally, Al is being employed in enterprises to optimize the use of renewable energy and
reduce CO; emissions. These innovations not only make industrial facilities more resilient
to climate change but also significantly reduce their carbon footprint [147].

Al plays a critical role in predicting and managing climate risks. By utilizing machine
learning and big data, models can be developed to forecast the impact of climate change
on the infrastructure and energy supply. For instance, Al can predict energy-consumption
patterns based on weather conditions, enabling businesses and energy networks to better
adapt to climate risks [145]. Additionally, a study [141] explores the development of Al
algorithms for the prediction of carbon emission and energy system management, which
adjust their operations according to climate conditions, helping to mitigate the effects of
climate change.

3.12. Social, Economic and Political Aspects of Energy-Consumption Management

One of the key challenges for governments is to develop and implement effective poli-
cies that promote the adoption of renewable energy and reduce carbon dioxide emissions.
These efforts often involve programs that provide financial support for renewable energy
projects, subsidies for solar panel installations and the development of infrastructure for
electric vehicles [133]. A study [65] examines the role of international policies aimed at
reducing greenhouse gas emissions in the maritime industry. An important element of
government policy includes measures that encourage reductions in energy consumption in
various sectors of the economy, along with incentives for both citizens and businesses to
participate in energy-saving initiatives [148].
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An important aspect of government policy is regulating the transition to sustainable
energy. This includes implementing standards and regulations directed to reduce carbon
footprints and ensure the long-term sustainability of energy systems [149]. A study [1]
explores the role of support programs and investments in green technologies. Numerous
studies indicate that policies promoting improved energy efficiency can not only reduce
emissions but also stimulate economic growth by creating new jobs in the renewable energy
sector [150].

An important aspect of energy-consumption management is the social and economic
consequences of the implementation of renewable energy sources [34,108]. The transition
to sustainable energy can have a significant impact on social groups, especially workers
in traditional sectors, such as the coal industry, where the development of retraining and
support programs is required.

A critical role is played by programs to support socially vulnerable groups affected by
the increase in energy costs during the energy transition [151]. The results of study [152],
based on the analysis of carbon emission reductions during the COVID-19 pandemic, show
that planned economic slowdown and energy efficiency improvements can significantly
reduce carbon emissions.

Many national and international programs for energy-consumption management and
sustainable energy development are based on the UN Sustainable Development Goals
(SDGs) [153]. Policies focused on decarbonization and the transition to renewable energy
sources contribute directly to goals, such as reducing emissions (SDG 13—Climate Action,
combating climate change) and ensuring access to affordable, clean energy (SDG 7) [137].
A key component of these programs is promoting the increased use of renewable energy
sources, enhancing energy efficiency and developing more sustainable energy systems.
This requires developing strategies for engaging the private sector and international orga-
nizations to collaborate on SDG initiatives.

The issue of energy poverty remains critical in a number of regions, particularly in
the context the global energy crisis. A study [154] examines the role of policy in com-
bating energy poverty in the EU and the UK. The application of AI and ML allows for
the more precise identification of vulnerable households and the development of support
mechanisms, helping to reduce social inequality and expand access to energy resources.
Government programs are being aimed at lowering household energy consumption, pro-
moting energy-efficient technologies and providing financial assistance to low-income
households to improve their access to energy resources [151].

Our research shows that the interest in different topics fluctuated between 2011 and
2024. Figure 5 illustrates the distribution of topics based on the number of references in the
cited sources.

If we look at the dynamics over the years, the topics can be divided into different
trends: for some topics, the interest decreased, others just emerged and for some topics, the
interest was and still is high. For example, the topics of “Sustainable building and green
technologies with AI and ML application for energy efficiency in buildings”, “Climate
change prediction and adaptation of energy systems to climate change” and the “Social,
economic and political aspects of energy consumption management” maintained high
interest throughout the period from 2021 to 2024. In fact, interest in these areas even
increased in 2024.

For the topics “Al in renewable energy sources”, “Energy transition and decarboniza-
tion through innovative technologies” and “Climate change mitigation through Al”, interest
grew steadily each year, reaching its peak in 2024. In contrast, the topic “Improving energy
efficiency in transportation and e-mobility” saw its highest level of interest in 2021, after
which interest significantly declined. This trend is depicted in Figure 6.
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4. Discussions and Conclusions

The study focused on systematizing the existing scientific literature to identify sig-
nificant common themes and trends in the use of Al and ML tools in improving energy
efficiency in different sectors and countries, with a focus on addressing climate challenges,
such as reducing carbon emissions and optimizing resource use.

This literature review highlights substantial progress in the application of artificial
intelligence (AI) and machine learning (ML) techniques aimed at enhancing energy effi-
ciency and address climate change issues. A systematic analysis encompassing 237 research
papers and 388 patents reveals a notable upward trend in research and innovation, partic-
ularly over the past two years. The focus of this trend spans several domains, including
engineering, computer science and energy. These findings suggest a growing interest from
both academic and industrial sectors in using Al to solve urgent environmental challenges.

The literature review conducted allows us to draw several key conclusions regard-
ing the role and potential of Al and ML in improving energy efficiency and addressing
climate challenges.

One of the key trends of scientific interest observed over the last 5 years is the inte-
gration of artificial intelligence (AI) and machine learning (ML) in sustainable building
practices and green technologies. These technologies are particularly significant in urban
environments, as they contribute to mitigating the urban heat island effect and reducing
carbon emissions. The combination of physical simulations and Al predictive models
shows great potential for energy consumption optimization, particularly within heating,
ventilation and air conditioning (HVAC) systems. The results indicate that neural networks,
CNN-LSTM models and gradient-boosting methods, such as LightGBM and XGBoost,
can enhance the accuracy of energy consumption predictions, leading to improvements
in building energy efficiency by as much as 22.3%. This underscores the transformative
potential of Al in promoting sustainable urban development and green building practices.

The concept of the Internet of Energy (IoE), which is the integration of the Internet
of Things, cloud computing and big data analytics technologies to create smart and in-
tegrated energy grids, is currently a relevant and rapidly growing area of research and
practical application. The critical role of the IoE is to act as a bridge between the various
components of smart grids, ensuring their optimal performance by predicting energy
consumption, monitoring system health and automating control. IoE improves network
efficiency, reduces energy costs and makes the network adaptive and resilient to changes in
energy consumption.

The results also indicate the expanding role of artificial intelligence (AlI) in smart
grids, where real-time data collected from Internet of Things (IoT) sensors, combined with
Al-based algorithms, improve energy distribution and load management. The integration
of renewable energy sources, such as solar and wind power, is particularly benefited by
Al's capacity to predict energy generation and optimize resource distribution. Nevertheless,
these achievements are accompanied by challenges, including the maintenance of grid
stability and the need to ensure the scalability of Al-based solutions.

Al also has an important role to play in the integration of renewable energy, which is a
key factor in the global transition to a low-carbon economy. The ability of Al to manage
and predict energy consumption in intermittent renewable energy systems is an important
advantage. However, ensuring the reliability of these systems in a changing environment
remains a subject of active research.

Another significant topic for discussion is the application of artificial intelligence (Al)
in climate change mitigation. The predictive capabilities of Al are crucial for predicting
the impact of climate change on energy systems and for developing effective adaptation
strategies. The successful implementation of ML in post-combustion carbon capture (PCCC)
illustrates Al's potential to enhance the efficiency of carbon capture processes, which is
essential for reducing industrial emissions. However, the economic feasibility of these
technologies remains a challenge due to their high energy consumption, emphasizing the
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need for further research on low-energy technologies and materials, as well as materials
science and chemistry.

Finally, policy and regulatory frameworks play an important role in supporting the
adoption of artificial intelligence (Al) in energy efficiency projects. The results indicate
that government initiatives, particularly those aligned with the United Nations Sustainable
Development Goals, serve as significant incentives for the utilization of renewable energy
sources and Al-based energy efficiency measures. However, energy poverty continues to
be a challenge in many regions, and Al has the potential to provide targeted solutions for
identifying vulnerable households and enhancing access to energy-efficient technologies.

Despite this progress, the review identified significant barriers to the adoption of Al in
energy efficiency projects, especially in transportation and industrial automation. While Al
and ML improve energy management and predictive maintenance in industrial sectors, the
high energy consumption of these technologies, especially large language models (LLMs),
poses a challenge. The carbon footprint associated with LLMs underscores the need to
develop more energy-efficient computing architectures and optimize learning algorithms
to reduce their environmental impact.

Limitations of the research. As with any research, this study has its limitations. It
primarily focused on technological aspects, particularly the influence of digital technologies
on energy efficiency and climate change. However, the long-term return on investment for
energy efficiency solutions, particularly in the context of environmentally friendly materials
and innovative methods, remains insufficiently explored. This gap restricts the economic
evaluation of such projects.

Furthermore, the majority of the studies and patents examined are primarily focused
on developed economies and major markets, including the United States, United Kingdom,
China and India. This concentration may constrain the applicability of the findings to other
regions, particularly low- and middle-income countries, where infrastructure and access to
technology can vary significantly.

Although artificial intelligence contributes to enhancing energy efficiency, our research
does not broadly address the carbon footprint associated with the training of large language
models and the Al implementation process itself. This is an important aspect in the context
of measuring the positive and negative effects of Al on climate change and requires more
detailed consideration and further research to comprehensively evaluate the impact of
technology on the environment.

Prospects for Future Research. Despite significant advancements in the application of
artificial intelligence and machine learning to improve energy efficiency, there are many
areas that require deeper research and development. One of the key areas for future inves-
tigation is the integration of Al and digital twins into the existing building infrastructure.
Practical examples are essential to illustrate the long-term economic and environmental
benefits of using these technologies, particularly in the context of climate change. Addi-
tionally, evaluating the long-term return on investment for energy-efficient solutions and
ecological materials remains a pressing concern that necessitates further analysis.

Another critical area of research is the integration of artificial intelligence with re-
newable energy sources and the development of methods for their optimal utilization
in industrial and urban systems. This encompasses the creation of adaptive models for
energy-consumption management in smart grids that are capable of taking into account
extreme climatic conditions. A promising direction in this field is the creation of integrated
solutions to improve the interaction among various renewable energy sources and their
integration into urban energy systems.

Particular attention should be paid to cybersecurity challenges in smart grids and
the development of sustainable solutions to prevent the risk of cyberattacks. The rapid
development of IoT technologies and the increasing number of connected devices require
the increased security and reliability of these systems. Additionally, research focused on
developing new energy-storage methods and integrating artificial intelligence with these
technologies to improve grid stability and reliability is also critical.
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Additionally, a promising area for research is the development of standards and
protocols for evaluating the energy efficiency of various Al-controlled systems. This may
include the creation of metrics to assess the efficiency of automated industrial processes and
their adaptation across different industries. Furthermore, research is necessary to improve
water-management practices, particularly in regions vulnerable to climate risks, where
artificial intelligence can play a key role in ensuring the sustainability of water systems.

The integration of artificial intelligence with blockchain technology to manage dis-
tributed energy systems, particularly at the community and small business levels, repre-
sents a significant area for further research. This direction has the potential to support the
development of localized energy production and contribute to more sustainable energy
management models.

One of the pressing challenges is the reduction of the carbon footprint associated with
large Al language models. This requires research focused on developing more energy-
efficient computing architectures and learning algorithms that minimize energy costs.
Additionally, investigating the life cycle of language models from development to imple-
mentation and operation is essential for assessing their environmental impact.

Finally, research is essential to understand the socio-economic consequences of the
energy transition. It is important to investigate how these changes affect local communities,
the creation of jobs in the green economy and the development of retraining programs
for workers displaced from traditional sectors. Furthermore, the development of socially
oriented strategies and financial instruments to support sustainable development will help
minimize the negative consequences for vulnerable groups of the population.

Thus, future research on the application of artificial intelligence and machine learning
for enhancing energy efficiency necessitates an integrated approach focused on developing
technological solutions, enhancing the sustainability of energy systems and considering
socio-economic factors. Key priorities for the scientific community in the coming years
should include integrating renewable energy sources, improving system reliability and
cybersecurity and reducing the carbon footprint of Al technologies.
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ARTICLE INFO ABSTRACT

JEL: There is a rapidly growing number of studies on transnational climate change mitigation technology (CCMT)
033 diffusion. Most of these studies have adopted a bilateral perspective, treating countries as primary agents driving
Q40

the diffusion process. However, CCMT diffusion typically arises from the interactions between firms and involves

ggg strong network effects. In this paper, we explore the global CCMT diffusion from a network perspective, with
X s multinational corporations (MNCs) as network makers. We first propose a methodology to construct the global
eywords:

CCMT diffusion networks, leveraging CCMT-related patent data, intra-firm relationships, and business scales of
the selected MNCs. We then calculate the network capital for each country, utilizing it as the input for the
econometric analysis to investigate the network effects on CCMT development. The network statistical analysis
reveals an uneven geographical distribution of network capital, underscoring the presence of global disparities in
CCMT development. Moreover, the econometric analysis identifies significant network effects originating from

Climate change mitigation technologies
Diffusion networks

International knowledge spillovers
Energy transition

Intra-firm ownership

linkage volumes and structural positionalities within the CCMT diffusion networks.

1. Introduction

An expanding coalition of countries, cities, firms, and institutions is
collaboratively striving to cut greenhouse gas emissions to as close as
zero by 2050 (IEA, 2021). However, achieving net-zero emissions by
mid-century presents challenges primarily due to the magnitude of the
fluxes (Allen et al., 2022; Arora and Mishra, 2021). There is a substantial
emission gap between the projected emissions based on the Nationally
Determined Contributions announced prior to COP26 and the emission
levels necessary to align with modeled mitigation pathways that limit
global warming to 1.5 °C or below 2 °C (Chen et al., 2022; ICPP, 2023).
In this regard, accelerating the development and diffusion of CCMTs
presents a strategic way to bridge the gap between political rhetoric and
net-zero carbon reality (Herman, 2022; Probst et al., 2021; Vakulchuk
et al., 2020; Wang et al., 2021).

Several strands of literature have examined the drivers of CCMT
development. On the one hand, some literature suggests that technology
development is a path- and place-dependent process (Aguirre and Ibi-
kunle, 2014; Martin, 2021; Monasterolo et al., 2019; Nelson and Winter,
1982). This perspective emphasizes the significance of domestic factors
such as policies (Popp et al., 2011) and social-technical configurations
(Hansen and Coenen, 2015; Przychodzen and Przychodzen, 2020) in

shaping technology development. On the other hand, recent literature
sheds light on the role of cross-border CCMT diffusion driven by inter-
national knowledge transfer (Fadly and Fontes, 2019; Holm et al., 2020;
Lopolito et al., 2022; Shih and Chang, 2009; Yu et al., 2022). However,
most recent empirical studies have two potential limitations. First, they
tend to focus on bilateral relationships between countries as a measure
of international connections. Yet, technology diffusion is not a
straightforward bilateral process; it often involves strong network ef-
fects originating from agents' indirect linkages (Aldieri et al., 2019;
Derudder, 2021; Halleck-Vega et al., 2018; Jackson et al., 2017). The
second concern arises with the idea of countries as agents in trans-
national CCMT diffusion. While countries certainly wield significant
influence in certain industries like aerospace and nuclear energy (Vega
and Mandel, 2018), in the case of most CCMTs, the diffusion process is
ultimately shaped by interactions at the firm level (Chaney, 2014;
Horbach and Rammer, 2018; Yeung, 2005).

To address these issues, this paper adopts a network perspective to
explore the network effects arising from the global CCMT diffusion
processes on CCMT development. In network theory, a network consists
of nodes and links that display a pattern of connections (Freeman,
2004). In this paper, we explicitly incorporate a critical sub-nodal level,
namely firms, into the network structure, aligning with the approach
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employed in relevant previous studies (see, e.g., Taylor, 2001, Sassen,
2013 and Neal et al., 2021). We argue that it is the firms operating
within and across countries that essentially shape countries as nodes
within the global diffusion networks (Beaverstock et al., 2000; Sassen,
2013; Taylor and Derudder, 2015; Taylor, 2001; Wall et al., 2011).

In this regard, the selection of firms and the types of their relation-
ships are crucial. We focus on the intra-firm relationships of multina-
tional corporations (MNCs) with significant CCMT innovation capacities
for several reasons. First, MNCs possess extensive knowledge pertaining
to innovative technologies, owing to their substantial R&D investment
and their pursuit of economic gains (Hotz-Hart, 2000; Popp, 2020).
Second, certain types of knowledge are more prone to internal trans-
mission (Gaur et al., 2019; Markusen, 1995; Spraggon and Bodolica,
2012). For example, tacit knowledge tends to circulate more efficiently
among individuals or groups within a well-structured framework,
facilitated by established organizational routines, ultimately becoming
an integral component of a firm's cumulative knowledge bases (Grant
and Phene, 2022; Howells, 1996). Furthermore, to prevent knowledge
from falling into a competitor's hands and to maximize the returns on
R&D investment, strategic innovations are often held in strict confidence
(Abdul Wahab et al., 2009; Archibugi and Filippetti, 2018; Liebeskind,
2009). Third, the internationalization strategies and local market op-
erations of MNCs facilitate knowledge transfer on a global scale (Bathelt
et al., 2004; Hitt et al., 2016). Finally, cross-border intra-firm relation-
ships encompass dynamic interactions between headquarters and sub-
sidiaries, inherently promoting international knowledge diffusion
through these connections (Athreye et al., 2016; Ferraris et al., 2020;
Van Wijk et al., 2008).

Specifically, we first identify the 228 most innovative MNCs in
CCMTs based on their patent activities up to and including 2021. We
then construct the CCMT diffusion networks, incorporating data on
sustainable innovation capacities, business scales, and geographical in-
formation regarding the headquarters and subsidiaries of these 228
MNCs. The weighted networks involve 656,586 transnational linkages
across 185 countries/regions. Once these networks are established, we
calculate the network capital of each country within the diffusion net-
works with respect to linkage volumes and structural positionalities.
Finally, we incorporate these network capital measures into the
econometric regression models to investigate the network effects origi-
nating from the diffusion networks on CCMT development.

This paper offers two innovations. First, we investigate the global
CCMT diffusion networks with a focus on the global deployment of
sustainable innovation MNCs, whereas the existing empirical studies
primarily consider countries as network makers. Moreover, over the past
decades, numerous studies have constructed global relational networks
using data from various types of firms, including MNCs (Alderson and
Beckfield, 2004), advanced producer service firms (Beaverstock et al.,
2000; Taylor and Derudder, 2015), and financial firms (Diebold and
Yilmaz, 2014). However, we are not aware of any studies that approach
global corporate networks in the context of sustainability transitions and
CCMT diffusion. Second, we adopt a network perspective to assess the
impact of different forms of network capital on CCMT development.
Existing literature mainly focuses on bilateral relationships. In contrast,
our network-based approach not only captures the effects of direct
linkages but also systematically provides insights into network effects
arising from structural positionalities within the networks.

This paper proceeds as follows. In Section 2, we briefly review the
relevant literature, highlighting the necessity of integrating network
capital into analysis of factors that influence CCMT development. In
Section 3, we outline the methodology for network statistical analysis
and econometric model specification. Section 4 presents the data, while
Section 5 discusses the findings. We conclude and propose directions for
future studies in Section 6.
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2. Literature review

Literature on technology development and diffusion is pervasive.
Technological progress is often considered as a path- and place-
dependence process (Boschma et al., 2018; Heimeriks and Boschma,
2014; Nelson and Winter, 1982). In the context of CCMTs, existing
research mainly identifies relevant domestic determinants that influence
green innovations from a host country perspective (Halleck-Vega et al.,
2018; Lopolito et al., 2022). These factors include technological relat-
edness (Hidalgo et al., 2018), reliance on natural resources (Best, 2017),
and socio-economic configurations including environmental and energy
policies (Johnstone et al., 2010), market liberalization (Nicolli and
Vona, 2019), and access to financial capital (Nicolli and Vona, 2016;
Veugelers, 2012). There exist more comprehensive studies that examine
the role of these domestic determinants in CCMT development (see, e.g.,
Aguirre and Ibikunle, 2014, Popp et al., 2011 and Przychodzen and
Przychodzen, 2020).

With increasing globalization, recent literature has begun to explore
the impact of international relationships on transnational technology
diffusion, subsequently driving technological advancements (see, e.g.,
Ferrier et al., 2016, Lopolito et al., 2022, Perkins and Neumayer, 2005
and Popp, 2020). Countries' technological development reaps several
benefits from transnational technology diffusion (Mancusi, 2008). From
the perspective of individual nation/state, access to the knowledge
embedded in the technologies disseminated from abroad is instrumental
in advancing their own technological capacities (Hansen and Lema,
2019). This access is crucial for mitigating uncertainties and risks
associated with inventing and introducing new technologies (Giuliani
et al.,, 2016). New technologies are generally costly and unreliable
during the incubation and early commercialization stages (Negro et al.,
2012). In particular, CCMTs often carry significant uncertainties con-
cerning their investment returns (Shakeel et al., 2017). Furthermore,
countries can enhance the efficiency of their energy R&D investments by
leveraging knowledge generated elsewhere (Bosetti et al., 2008). This is
particularly relevant for the developing countries who can benefit from
the technological advancements of the forerunners (Pegels and Alten-
burg, 2020).

When considering global challenges, transnational CCMT diffusion
assumes a crucial role in achieving global sustainability transition goals.
Given that most developing countries orient their policies on poverty
reduction and economic modernization, the landscape of CCMT in-
novations is currently dominated by a handful of highly developed
countries (IEA, 2021; Kaygusuz, 2012; Probst et al., 2021). Since in-
novations already exist in certain countries, facilitating the transfer of
these technologies from inventors to late adopters becomes paramount
in addressing global challenges (Ockwell et al., 2008).

Current literature outlines three primary channels through which
technologies can be transferred across borders. The first channel is in-
ternational trade, which allows countries to acquire products and the
associated knowledge that have been innovated or produced elsewhere
(Garsous and Worack, 2022; Keller, 2004). This knowledge encompasses
various aspects, including production costs, technical performance, in-
dustrial chains, and experience, all of which is enriched through both
formal and informal interactions among trading partners (Athreye et al.,
2023). It is also suggested that the intensification of market competition
has increased the demand for new technologies. The second channel
involves foreign investment facilitated by MNCs. MNCs produce,
manufacture and control most advanced technologies worldwide
(Dunning and Lundan, 2008; Younas, 2021). When MNCs expand into
foreign markets, they export their experience and innovations to other
countries through project investments or subsidiary operations, thereby
enhancing the technological capacities of the recipient countries (De
Beule and Van Beveren, 2019). The presence of MNCs is widely
acknowledged for its role in facilitating the transfer of information,
know-how, and skills associated with cutting-edge technologies (Antras
et al., 2009). The third channel involves licensing agreements with local
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firms. MNCs transfer knowledge abroad by selling their intellectual
property rights to overseas companies (Casson and Wadeson, 2018).
Licensing often avoids many potential trade barriers when compared to
direct investments (Nagaoka, 2009).

In the context of CCMT diffusion, recent literature has explored how
these channels operationalize with different types of relationships be-
tween countries (De Coninck and Sagar, 2015; Fadly and Fontes, 2019;
Mandel et al., 2020). However, there are two potential drawbacks. First,
literature mainly focuses on bilateral relationships, treating each pair of
countries independently. The second concern arises from the notion that
countries are the primary agents in the process of CCMT diffusion.

The first drawback lies in neglecting the network effects, which
facilitate the diffusion of technologies between indirectly connected
countries through intermediaries. For example, even in cases where
there is no direct connection between countries A and C, technologies
and knowledge could still be exchanged between them via an interme-
diary country like B. This means that once knowledge is acquired by the
immediate partners of innovators, it can be further disseminated to the
partners of the direct partners and so forth (Faems et al., 2020; Ferrier
et al., 2016). Recent network-based models of technology diffusion have
approached how knowledge spreads across various network configura-
tions, suggesting the significance of network capital in international
knowledge acquisition (Allan et al., 2014; Chesbrough, 2003; Harris,
2011).

Network capital, a relational asset derived from complex interactions
with external actors, plays a vital role in facilitating knowledge ex-
change by establishing network connections to distant resources (Hug-
gins et al., 2012; Huggins and Thompson, 2014). Actors with higher
network capital tend to occupy advantageous positions to reinforce local
innovation efforts owing to their enhanced capacity to transfer complex
knowledge across spatial boundaries (Rodriguez-Pose and Crescenzi,
2008). Nevertheless, previous research on CCMT diffusion has pre-
dominantly embraced a bilateral perspective, with limited exploration
of network effects. A notable exception is the work of Halleck-Vega et al.
(2018). In their study, the authors adopt a network-based approach to
analyze the global transnational diffusion of wind energy technologies
from 1983 to 2016. They access various network centralities, including
degree, closeness, betweenness and eigenvector, across 94 countries.
Their findings highlight the significant network effects arising from the
structural positionalities within these networks, which play a pivotal
role in facilitating the transnational diffusion of wind energy
technologies.

Nevertheless, within these studies, the idea of countries acting as
agents of CCMT development and network makers of global CCMT
diffusion networks raises another concern. Most network analysis relies
on a two-level structure, consisting of members as nodes, i.e. countries,
and their interactions that constitute the networks. While the literature
notes that cities or countries function as nodes in the networks, they are
not the primary agents in the formation of networks (Beaverstock et al.,
2000; Taylor and Derudder, 2015; Taylor, 2001, 2019). Instead, the
interlocking network model introduces the concept of sub-nodes as the
foundational element of network formation (Derudder, 2012; Taylor
and Derudder, 2015; Taylor, 2001, 2011). It is suggested that the
behavior of the sub-nodes, i.e. firms, play the fundamental roles in
shaping cities or countries as nodes within the network (Derudder and
Parnreiter, 2014; Liu and Derudder, 2012; Neal et al., 2021).

Our paper demonstrates how cross-border activities of MNCs estab-
lish connections between countries. We identify these relationships be-
tween countries by essentially analyzing the behaviors of firms. This is
particularly important in the context of CCMTs, as transnational diffu-
sion primarily emerges from interactions between private firms (Hor-
bach and Rammer, 2018). While countries undeniably play important
roles in CCMT diffusion, they often function as intermediaries or facil-
itators, for instance, by offering incentives and providing R&D in-
vestments to support firms (Moss, 2009). Accordingly, this paper aims to
tackle these two potential challenges and pitfalls by examining the roles

Energy Economics 133 (2024) 107497

of sustainable innovation MNCs in accelerating CCMT diffusion. We
account for the network capital generated throughout the CCMT diffu-
sion process when assessing the factors that influence CCMT
development.

3. Methods

The methodological framework employed in this paper consists of
two parts. Section 3.1 introduces the method for network statistical
analysis. Drawing from Derudder (2021) and Taylor and Derudder
(2015), we analyze firms' behaviors with the goal of constructing
country-level networks. Section 3.2 discusses the econometric specifi-
cation, where we incorporate the network variables calculated in Sec-
tion 3.1 into the econometric regression model to examine the
relationship between network capital and CCMT development.

3.1. Network statistical analysis

In this analysis, the global CCMT diffusion networks are represented
by weighted intra-firm networks of MNCs with substantial sustainable
innovation capacities. This is mainly motivated by their extensive
knowledge bases, global deployments, and internal knowledge flows
within them resulting from intra-firm relationships. To construct these
networks, we identify the top MNCs with strong sustainable innovation
capacities in CCMTs based on their CCMT-related patent activities. We
select MNCs that have obtained a minimum of 15 CCMT-related patents
up to and including 2021. We set a threshold of 15 CCMTs to ensure that
the selected MNCs devote substantial resources to CCMT research during
the study period, excluding those only involved in short-term, sporadic
activities. This threshold also filters out smaller MNCs with less influ-
ence in the global CCMT landscape. This results in a total of 228 MNCs
worldwide.! Subsequently, we construct firm-to-country two-mode
networks based on the country-level geographical locations of these
MNCs' headquarters and subsidiaries. These networks are assigned
weights using information on their sustainable innovation capacities
and business scales. Finally, we convert these two-mode networks into
country-dyad one-mode networks, which allow us to calculate the
network capital for each country.

3.1.1. Constructing weighted matrices

When constructing the weighted matrices, we consider three factors
that potentially influence the magnitude of knowledge transfer,
including the number of MNCs within a country, the sustainable inno-
vation capacities of these MNCs, and their business scales.

Regarding the first factor, we quantify it by counting the presence of
selected MNCs' headquarters and subsidiaries in each country. Similar to
Alderson and Beckfield (2004), Wall et al. (2011) and Derudder and
Parnreiter (2014), we measure the intensity of CCMT diffusion between
two countries by considering the cumulative number of intra-firm
linkages that connect the home countries, where headquarters are
based, to the host countries, where subsidiaries are located. Mathe-
matically, the directed network G(V,E) consists of a set of
countries N = |V| and a set of linkages E = |¢|, fully presented by its
adjacency matrix M = {my}. In this binary matrix, each element m; =
{0,1} indicates whether the subsidiary of the MNC headquartered in
country i is present (1) or absent (0) in country j in 2021. Here, we assign
the adjacency matrix M a weighted matrix Wy = {wy}, where w; =
Ezzlvi‘a*vj_a. It quantifies the overall strength of the connection between
any given pair of countries i and j by summing the number of sub-
sidiaries located in country j across all MNCs (a—n) which have their
headquarters in country i. Each element of the adjacency matrix M is

! For MNGCs with CCMT rankings below 228, there is a significant decrease in
the total number of CCMT-related patents.
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denoted as

{my*w;} = {m]*zl vf‘a*v;‘a} 1

Next, building on M;, we consider variations in sustainable innova-
tion capacities among the MNCs. We assign a normalized patent weight
W, = {p./P} to each element of the adjacency matrix M;, where p,
represents the number of patents held by MNC n, and P represents the
total patents held by these 228 MNCs. Consequently, each element in the
adjacency matrix M, can be expressed as

{m,-j*w,-j*l%} = {m,,zzl Via*Via ’JZ} ()]

Finally, we consider the business scales of these 228 MNCs, which
suggest their diverse knowledge bases and influence potential. To assign
greater weights to MNCs with larger business scales, we introduce a
normalized turnover weight W, = {t,/T,} to each element of the adja-
cency matrix M,. Here, t, represents the average turnover of firm n from
2000 to 2021, and T is the sum of average turnovers for these 228 MNCs
over this period.” Each element of the adjacency matrix Mj is denoted as

%* Pn In ” % wPa Iy
{m,y Wij*;*f} = {mIY*Za]vi,tx Via F*T} 3)

The subsequent analysis is based on the adjacency matrix M3, which
incorporates all three factors that can influence a firm's technology and
knowledge transfer capacities.

3.1.2. Calculating network capital

Upon constructing the company-to-county two-mode weighted net-
works, we convert them into country-dyad one-mode networks. In this
study, we consider the network as an outcome rather than a process,
aiming to assess the network capital of countries across various di-
mensions of centrality measures. Consequently, we employ centrality-
based network analysis techniques, rather than techniques that are
mainly used for network formation studies such as the tie-oriented
exponential random graph model (Lusher et al., 2013). Following the
approach adopted in relevant studies (see, e.g., Huggins et al., 2012,
Huggins and Thompson, 2014 and Shi et al., 2022), network capital is
measured with respect to linkage volumes and structural positionalities,
considering whether the capital is generated through direct linkages or
structure positions.

Linkage volumes reflect a country's capacity to establish interactions
with other countries. We measure linkage volumes by considering
transnational intra-firm linkages, encompassing weighted indegree,
weighted outdegree, and weighted total degree. Specifically, weighted
indegree represents the sum of weighted inbound connections, denoting
the number of subsidiaries received by a country. It provides insight into
a country's centripetal force and attractiveness to source countries.
Weighted outdegree measures the sum of weighted outbound connec-
tions, indicating the number of headquarters located in a country. It
reflects a country's centrifugal force and prestige in expanding its in-
fluence within the network. Weighted total degree is the sum of
weighted indegree and weighted outdegree, calculating the total
weighted connections occurring within a country's borders. This metric
represents a country's self-maintained capacity within the network
(Table 3). Mathematically, following Newman (2018) and Alderson and
Beckfield (2004), the degree centrality of country v is given by

2 We use turnover data starting from 2000 mainly due to the unavailability of
turnover data for many firms before 2000. Furthermore, among these 228
MNCs, 6 of them were established after 2000. We calculate their average
turnover by dividing the total turnover between the year of their establishment
and 2021 by the number of years since their establishment.
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Td,

= m )

D(v)
where N represents the set of nodes in the network, and Td, denotes the
total degree of country v, i.e., the count of linkages that are directly
connected to country v. Td, consists of two components, namely inde-
gree Id, measures the number of incoming linkages to country v, and
outdegree Od, represents the number of outgoing linkages from country
V.

Furthermore, structural positionalities evaluate a country's signifi-
cance within the network by considering its connections with influential
counterparts. These are assessed using metrics including eigenvector,
betweenness, and closeness. Specifically, eigenvector evaluates a
country's ability in enhancing its standing by establishing its connec-
tions with influential peers. It suggests that a country may not be
advanced in CCMTs, it can still benefit from being highly connected to
countries with high CCMT capacities. Mathematically, the eigenvector
E(v) of country v is written as

1 1
E(V) = EZIEM(V)XZ - ;ZzeGawx’ (5)

where M(v) is a set of neighbours of v, a,, is 1 when v and t are directly
connected, and 4 is a constant. Betweenness quantifies how frequently a
country appears on the shortest paths between two indirectly connected
countries, indicating its gateway position within the network. The
betweenness B(v) of country v is written as

(7“_,(\1)

B(V) = Zu#v#tev Oy (6)

where o is the number of shortest paths between u and t, and o,,(v) is
the number of shortest paths between u and t that pass through country
v. Lastly, closeness quantifies a country's network proximity to others by
averaging the shortest path lengths from that country to every other
country within the network. The closeness measure C(v) of country v is
written as

1

)= ZueN/vd(Vv u)

()

where N is the set of countries in the network, and d(v, u) is the length of
the shortest paths from v to all the other vertices u. We employ Gephi
software for network visualization and network capital calculation.

3.2. Econometric regression analysis

To explore the relationship between network capital generated
during the CCMT diffusion process and CCMT development, we estimate
the following econometric equation:

Y =a+p N, +p,Xi+¢ (8)

where Y; is the level of CCMT development in country i in 2021, proxied
by the logarithm of per capita net renewable electricity production. The
inherent unpredictability of renewable energy resources introduces
several challenges during the renewable electricity production process
(Denholm et al., 2021). First, it requires balancing supply and demand,
which involves addressing short-term fluctuations of variable renewable
energy resources, diurnal mismatches, and seasonal mismatches. This is
particularly evident in technologies reliant on short-term weather con-
ditions, such as highly distributed solar photovoltaics and wind (Rai and
Henry, 2016; Zhang et al., 2023). Second, it requires the design of
reliable inverter-based grids to ensure frequency stability, voltage sta-
bility, rotor angle stability, power protection, and voltage control
(Kundur et al., 2004). Furthermore, economic viability entails consid-
erations of advancing materials, manufacturing processes, energy con-
version systems, as well as establishing a resilient and stable supply
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chain. Tackling these challenges requires integrating various technolo-
gies, and CCMTs offer numerous solutions. For example, YO2B highlights
technologies related to end-user applications, YO2E emphasizes energy
generation through various renewable energy sources, YO2P concen-
trates on technologies in the production or processing of goods and
products, YO2T encompasses solutions for electric vehicles, and Y04S
focuses on power networks operations and smart grids. Therefore, we
utilize per capita renewable electricity production as a proxy to gauge a
country's development level in CCMTs. The rationale is that addressing
the challenges mentioned often requires the effective and innovative
integration of various CCMTs. Similar to Fadly and Fontes (2019) and
Przychodzen and Przychodzen (2020), this indicator is calculated by
dividing the total renewable electricity net generation (in million kWh)
by the total population of the country in 2021.

Furthermore, a is the intercept, j is the vector of coefficients of the
independent variables, and ¢ represents the random error term. N; is the
network capital calculated in section 3.1, measured in terms of linkage
volumes and structural positionalities. Linkage volumes consist of
weighted indegree, weighted outdegree, and weighted total degree.
Structural positionalities encompass eigenvector, betweenness, and
closeness. Moreover, X; represents the control variables obtained from
the literature that could potentially influence renewable electricity
generation. They include GDP per capita, energy policy instrument, and
government's administrative capacity. GDP per capita accounts for the
economic size and the development level of a country. Energy policy
instrument, included as a dummy variable, aims to control for countries'
different industrial strategies and policy support. We access whether a
country had climate change mitigation policy in effect in 2021. These
policies encompass measures related to energy efficiency, renewable
energy, technology R&D and innovation, electrification, and carbon
capture utilization and storage. The variable takes a value of 1 if a policy
was in effect in a country in 2021 and 0 if no such policy was introduced
or had ended by 2021. Lastly, government's administrative capacity is
measured through regulatory quality and governance effectiveness. This
variable reflects a government's ability to manage the local clean energy
market and the ease or difficulty for private investors to conduct busi-
ness in that country. See Section 4.2 for more information on the data
sources used for these variables.

4. Data
4.1. Firm-level data

Three types of firm-level data are employed to construct the global
CCMT diffusion networks, namely cumulative CCMT-related patent data
up to and including 2021, country-level geographic data of headquarters
and subsidiaries in 2021, and the average turnover of these 228 MNCs
from 2000 to 2021.

We employ patent data related to CCMTs to identify the MNCs with
high sustainable innovation capacities in CCMTs. Patent data is widely
used to study knowledge generation and dissemination (Jaffe et al.,
2002; Verendel, 2023), as well as to characterize the knowledge bases of
countries and firms (Antonelli et al., 2010; Furman et al., 2002). The
CCMT-related patent data comes from the Worldwide Patent Statistical
Database (PATSTAT 2022 spring version), published by the European
Patent Office, which contains data from 84 patent offices worldwide and
covers all inventor countries (EPO, 2021; Popp et al., 2011). In 2012, the
European Patent Office introduced the Y02/Y04S classification scheme
within the PATSTAT to categorize technologies that are broadly asso-
ciated with climate change mitigation (Angelucci et al., 2018; Li et al.,
2020; Veefkind et al., 2012).Within the Y02/Y04S category, there are
nine subcategories, as detailed in Table 1. Our study aims to provide an
overview of the overall development and diffusion of CCMTs without
placing specific emphasis on individual CCMTs. Therefore, our analysis
encompasses all CCMTs categorized within the Y02/Y04S classification.

Fig. 1 illustrates the change in the number of CCMT-related patents
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Table 1
Description of the Y02/Y04S category.

Y02 Climate change mitigation technologies

Y02A Related to adaptation to climate change.

Y02B Related to buildings, including housing and appliances or related end-user
applications.

Y02C Capture, storage, sequestration or disposal of greenhouse gases.

Y02D Information and communication technologies aiming at the reduction own
energy use.

YO2E Related to energy generation, transmission and distribution.

YO2P Related to the production or processing of goods.

Y02T Related to transportation.

YO02W Related to wastewater treatment or waste management.

Y04S Smart grid technologies.

Source: EPO (2023).

for the top 10,000 firms or individuals from 2003 to 2021. Patents for all
nine CCMTs have experienced substantial growths, particularly since
2009. Among these categories, the CCMTs related to energy generation,
transmission and distribution (YO2E) exhibit the highest patent count,
totaling 165,578 patents. Conversely, CCMTs associated with the cap-
ture, storage, sequestration or disposal of greenhouse gases (Y02C)
display the lowest patent activity, with a total of 16,298 patents.

The PATSTAT database contains various types of firms, including
private versus state-owned firms, and multinational versus non-
multinationals firms. We focus on MNCs as we are interested in firms
that are capable of transnationally transferring technologies through
intra-firm linkages. We choose the MNCs that have filed a minimum of
15 CCMT-related patents up to and including 2021. This results in 228
MNCs globally and a total of 145,716 patent in our sample.” Among
these 228 MNCs, the average number of CCMT-related patents is 639.11,
with Siemens AG having the most (6913) and Moderna Inc. the least
(15).

Table 2 provides information on the leading MNCs which exhibit the
most robust sustainable innovation capacities among firms in our sam-
ple. Fig. 2 compares the total count of CCMT-related patents for these
228 MNCs, categorized by their respective countries/regions of head-
quarters. Countries with more CCMT-related patents are shaded darker.
These 228 MNCs are headquartered in 20 countries/regions. The top 10
countries boasting the largest number of CCMT-related patents are
Japan (46,529), the US (31,972), Germany (22,967), South Korea
(12,639), France (6077), the Netherlands (4631), the UK (4474),
Mainland China (3255), Sweden (2485), and Switzerland (2224).
Additionally, the figure provides a list of prominent MNCs head-
quartered in these 20 countries/regions with the highest number of
CCMT-related patents.

We obtain ownership information, country-level locations of head-
quarters and subsidiaries in 2021, and turnover data from 2000 to 2021
for these 228 MNCs from Bureau van Dijk's Osiris database. In the cases
of missing data for some firms in the Bureau van Dijk's Osiris database,
we source them from the annual reports of the respective companies. In
total, we extract a dataset comprising 88,863 ownership relationships,
of which 22,277 are domestic and 66,586 are transnational. To construct
global CCMT diffusion networks, we aggregate the data at the country
level. These networks connect 20 home countries/regions with at least
one outgoing corporate connection to 185 host countries/regions with at
least one incoming corporate connection. For example, Siemens AG,
headquartered in Germany, operates 1167 overseas subsidiaries across
85 countries in 2021. Among these, the US has the most Siemens AG
subsidiaries, totaling 456, whereas countries like Oman and Tanzania
have only one Siemens AG subsidiary each. We use the number of sub-
sidiaries as a measure to assess the extent of Germany's connections with

3 In the original database, 11 out of the top 240 firms are either state-owned
or non-multinational. They have been excluded from our firm sample.
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Fig. 1. Number of CCMT-related patents by type from 2003 to 2021.

Top five sustainable innovation MNCs and relevant information.

—Y04S

2020 2021

MNC Number of CCMT-related =~ Average turnover 2000-2021 Headquarter Top 5 overseas subsidiary Number of receiving
patents (billion USD) locations locations subsidiaries
Siemens AG 6913 $91.415 Germany USA 456
China 81
Canada 75
UK 39
India 34
Toyota Motor Corporation 6563 $ 207.749 Japan USA 216
China 29
Canada 21
Thailand 18
Indonesia 14
General Electric Company 6398 $125.715 USA UK 116
Canada 76
France 52
Netherlands 45
China 39
Raytheon Technologies 4911 $ 48.337 USA Canada 63
Corporation
UK 50
Australia 50
France 20
Italy 16
Panasonic Holdings 4850 $74.313 Japan USA 274
Corporation
China 74
Malaysia 24
Canada 21
Germany 20
Spain 20

other countries facilitated through Siemens AG. The list of these coun-
tries/regions can be found in the Appendix.*

4.2. Country-level data

We source data for renewable electricity generation in 2021, the
most current year for which the data is made available, from the U.S.
Energy Information Administration.” Regarding the control variables,

4 We source information about countries and regions from the United Na-
tions' list of member states.
5 https://www.eia.gov/

GDP per capita data is from the World Bank's Open Data platform.°
Energy policy instrument information, reflecting countries' different
industrial strategies and policy supports, are gathered from the Policies
Databases of the International Energy Agency and the International
Renewable Energy Agency.” This database is widely used in comparative
studies of cross-country policies in clean technologies (Baldwin et al.,
2017; Carley et al., 2017; Kim, 2020). Data on government's adminis-
trative capacity is collected from World Bank Worldwide Governance
Indicators.® Table 3 presents details on variable operationalization, data

6 https://www.worldbank.org/en/home
7 https://www.iea.org/policies
8 https://info.worldbank.org/governance,/wgi/
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Fig. 2. Comparison of CCMT-related patents by country/region.

sources, and descriptions. Notably, the econometric analysis retains 173
countries/regions due to missing data on one or more crucial variables
in some countries/regions, whereas the network statistical analysis
maintains a sample size of 185.°

5. Results and discussion
5.1. Network statistical analysis results

Figs. 3-8 illustrate the global CCMT diffusion networks using six
network capital measures. In these visualizations, each node represents
a country, while the links between nodes reflect CCMT diffusion level
among pairs of countries. Node size and the corresponding country
name indicate the magnitude of network capital within each country,
while edge thickness denotes the strength of CCMT diffusion between
connected countries.

Specifically, Fig. 3 exhibits the global CCMT diffusion network based
on weighted total degree, revealing an uneven spatial pattern. Countries
with substantial network capital are predominantly clustered in Western
Europe, North America, and East Asia, with Germany, the US, and Japan
as regional centers. Regarding interregional linkages, the US maintains
close ties with several Western European countries, especially the UK,
the Netherlands, France and Germany. Among the connections between
North America and East Asia, the link between the US and Japan stands
out prominently. Furthermore, connections between Western Europe

9 These 12 countries/regions that are excluded in the econometric analysis
are Andorra, Bermuda, Curacao, East Timor, Federated States of Micronesia,
Gambia, Gibraltar, Ivory Coast, Liechtenstein, Monaco, San Marino, and Tonga
with only a few connections in total.

and East Asia are relatively weaker, except for the strong links with
Japan and China. Additionally, intraregional interactions are less pro-
nounced compared to interregional connections. There exists a signifi-
cant proportion of interregional connections, irrespective of
geographical distance. However, there are instances of diffusion that can
be partly attributed to spatial proximity, such as Germany — the UK, the
US - Canada, and Japan — China.

Table 4 compares the top 10 countries across six different network
capital measures. Weighted outdegree analysis highlights that a small
group of countries predominantly controls the majority of outbound
connections. These influential countries include Germany, Japan, the
US, the UK, South Korea, the Netherlands, France, Canada, Switzerland
and Sweden. Together, these ten countries account for nearly 98.92% of
all weighted outgoing connections. A similar, though less pronounced,
pattern emerges when examining weighted indegree. The top 10 coun-
tries, namely the US, Canada, China, the UK, the Netherlands, France,
Australia, Germany, Mexico, and India, account for approximately
63.91% of all incoming connections. Concerning structural position-
alities, i.e. eigenvector, closeness, and betweenness, the US, China,
Canada, the UK, and the Netherlands also emerge as significant hubs and
authorities, reinforcing their dominant roles within the network.
Finally, concerning bilateral linkages, the global CCMT diffusion
network demonstrates a similar imbalance, with only 1.1% of country
pairs accounting for approximately 50% of all connections.

Interestingly, some countries, such as Australia, excel in terms of
linkage volumes but do not necessarily score highly in structural posi-
tionalities. Likewise, other countries, such as Belgium and Denmark,
appear to hold significance in structural positionalities even though they
may not stand out in terms of linkage volumes. This aligns with the
findings of Vega and Mandel (2018), who argue that a country that is
neither the most important source nor the most important technology
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Table 3
Description and summary statistics of the variable used.

Variable Indicator Obs.  Mean Std. Dev. Max Min

Firm-level data

Firms' sustainable Numbers of CCMT-related patents granted in or before 2021 228 639.105 1,019.168 6,913 15

innovative capacity

Firms' business scale Firm's average annual turnover between 2000 and 2021 (billion USD) 32.011 46.575 309.673 0.080

Firms' ownership Number of headquarters a country/ region host 20 11.4 19.313 77 1
Number of subsidiaries a country/ region receives 185 357.443 1,673.149 21,637 1

Country-level data

CCMT development Net renewable electricity production in 2021 (million kWh) 173 44,825.44  200,218.6 2,363,284 1.22
Net renewable electricity production per capita in 2021 (million kWh) 0.0016 0.005 0.052 6.20e-

07

Network capital

Weighted total degree “Self-maintained capacity”, scores measuring HQ-subsidiary linkages occurring 0.050 0.224 2.155 1.00e-
within a country's boundary (see e.q. 4) 06

Weighted indegree “Attractiveness”, scores measuring subsidiaries a country receives (see e.q. 4) 0.025 0.108 1.341 1.00e-

06

Weighted outdegree “Prestige”, scores measuring HQ a country hosts (see e.q. 4) 0.025 0.154 1.392 0

Eigenvector “Authority”, scores measuring relative ranking of connectedness taking into account 0.249 0.221 1 0.018
the whole network (see e.q. 5)

Betweenness “Gateway”, scores measuring the number of shortest paths from all countries to all 0.0004 0.001 0.011 0
others through a given country (see e.q. 6)

Closeness “Propinquity”, scores measuring the average shortest distance length between a 0.076 0.215 0.844 0
country and all other countries in a network (see e.q. 7)

Economic factor GDP per capita in 2021 (USD) 17,309.63 23,242.76 133,590.1 221.158

Energy policy instrument Dummy variable: 1 if a country has at least one related policy in effect in 2021, or 0.792 0.408 1 0
0 otherwise

Government's Scores measuring regulatory quality and government effectiveness in a given country 2.541 0.948 4.761 0.313

administrative capacity

adopter can still be influenced by networks due to its connectedness with
influential counterparts.

In conclusion, the sustainable innovation capacities of MNCs and
their strategies for global expansion result in countries assuming varying
roles in transnational CCMT diffusion. Throughout this process, leading
countries, notably the US, Germany, and Japan, control the majority of
network resources, leaving others in a relatively disadvantaged position.
The disparities in countries' network capital allow us to investigate
whether these network advantages can indeed facilitate the develop-
ment of CCMTs.

5.2. Econometric regression results

Table 5 presents the estimated results concerning the relationship
between network capital and CCMT development. Given that different
network measures conceptually capture different facets of network
capital, they are introduced separately into the econometric models.
This mitigates issues related to over-identification and multicollinearity
issues (Shi et al., 2022). Consequently, we estimate six separate
econometric regression models, each emphasizing a single network
capital.

Regarding the linkage volume variables, both weighted total degree
and weighted indegree show a statistically significant positive rela-
tionship with renewable electricity production at the 5% level. Addi-
tionally, weighted outdegree demonstrates significance at the 10% level.
These results suggest that a country's CCMT development can be posi-
tively influenced by the presence of sustainable innovative MNCs (An-
tras et al., 2009).

The significant estimate of the coefficient of weighted indegree
suggests that recipient countries benefit from receiving subsidiaries of
MNCs with advanced CCMT capacities. This finding may be attributed to
the substantial consumer markets for certain CCMTs in less developed
countries, such as China and Brazil. Considering that countries hosting
MNCs' headquarters tend to be more developed than countries receiving
subsidiaries (Pfeiffer and Mulder, 2013), driven by market and return-
on-investment interests, MNCs actively promote innovations origi-
nating in countries where their headquarters are located to other nations

through their globally deployed subsidiaries (Caleb et al., 2021).

Another plausible explanation is the latecomer advantages in recip-
ient countries, where less developed countries can rapidly adopt inno-
vative technologies across their industrial structures (Perkins and
Neumayer, 2005). First, late industrializers reap advantages from
learning from technological pioneers (Grubler, 2012). The initial R&D
phase of CCMT development typically involves high cost, limited flexi-
bility, and unpredictability. Risk-taking MNCs tend to drive down
application costs, enhance performance, and render the technologies
economically viable, albeit at the cost of substantial expenditures
(Hoskisson et al., 2011). Second, governments in advanced economies
have been actively pursuing policies aimed at accelerating the adoption
of emerging CCMTs such as residential solar photovoltaics and electric
vehicles. Latecomer nations can leverage the experience and effective
policies of these forerunners to accelerate the proliferation rates of such
technologies. Fadly and Fontes (2019) and Lopolito et al. (2022)
demonstrate the positive cross-country spillover effects stemming from
policies designed to accelerate the development of CCMTs. Moreover,
considering that most recipient countries have not yet established sub-
stantial capacity in this domain, they have the flexibility to choose and
integrate new technologies as part of their capital expansion efforts
(Bank, 1992; Popp, 2020).

The significant coefficient estimate for weighted outdegree suggests
that a country can benefit from hosting the headquarters of MNCs with
advanced CCMT capacities. Several arguments explain this finding.
First, technologies tend to spread from their origins and initial markets
due to geographical proximity (Corradini et al., 2021; Ernst, 2002).
Face-to-face interactions, which decay with distance increases, further
expedite this diffusion process (Bahar et al., 2014). Therefore, countries
hosting the headquarters of these MNCs gain early access, allowing them
to adopt advanced CCMTs before widespread commercialization
(Aldieri, 2011). Moreover, domestic diffusion of new technologies
typically face fewer policy and regulatory barriers compared to trans-
national diffusion (Rao and Kishore, 2010). For instance, concerns over
intellectual property rights can be more manageable when technologies
are disseminated within a country, as opposed to cross-border transfers
with varying intellectual property regulations (Dechezlepretre and
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Fig. 3. Global CCMT diffusion network based on weighted total degree.
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Fig. 4. Global CCMT diffusion network based on weighted indegree.

Glachant, 2014; Popp, 2020). Consequently, both geographic and
institutional proximity to innovators serve as effective and efficient
means for disseminating knowledge.

Regarding structural positionalities, all three measurements, namely
eigenvector, closeness, and betweenness, are identified as important
factors affecting renewable electricity production. This supports the
argument that an economy, which may not be the primary source or
recipient of CCMTs in terms of quantity, can still derive benefits from
innovators thanks to its pivotal position within the network (Fadly and
Fontes, 2019; Vega and Mandel, 2018).

Structural proximity to other innovators within the networks confers
two significant network advantages that facilitate CCMT development in
the intermediate countries. First, central positioning in various capital
flows provides these economies with access to a diverse range of

resources, capabilities, and markets (Lin, 2011). This creates great op-
portunities for knowledge sharing and learning (Cheng, 2022). Such
opportunities are strategically valuable, enabling economies to acquire
new technologies ahead of widespread adoption. Second, their hub and
gateway positions allow for the convergence of interdisciplinary
knowledge, effectively transforming these economies into “chemical
containers” where various innovations intersect (Penco, 2015). Within
these economies, entities such as firms and governments do not merely
act as passive knowledge recipients but also function as knowledge
processors through local market exploration. Throughout these pro-
cesses, network synergy facilitates knowledge reproduction, drawing
from a broad pool of information initially held by each individual agent
(Bathelt and Cohendet, 2014; Bathelt et al., 2004). This is particularly
crucial in the context of CCMTs, which can be regarded as radical
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Fig. 5. Global CCMT diffusion network based on weighted outdegree.

' AU

Fig. 6. Global CCMT technology diffusion network based on eigenvector.

innovations emerging from the synthesis of existing technologies in
novel ways (Li et al., 2020).

In the CCMT diffusion network, these MNCs can adapt their inter-
national investment strategies through interactions with local stake-
holders. Simultaneously, regional policymakers can leverage network
capital generated by participating in MNCs' global expansion to drive
regional development. This point can be further highlighted with the use
of an illustrative example. In particular, we can consider BYD, a
Shenzhen-based Chinese company that has established three factories in
Brazil to domestically produce chassis and batteries for electric buses,
and solar panels. In 2015, BYD initiated its operations in Campinas,
Brazil, manufacturing chassis for electric buses. In 2017, the Brazilian
Development Bank introduced a new policy known as FINAME, aimed at
enhancing local manufacturer competitiveness and sustain national
supply chains. Under this policy, customers seeking financial loans were
required to ensure that the nationalization index of the products they

10

purchase reached a minimum of 50%. In response, BYD established
another factory in Manaus to produce lithium iron phosphate batteries
locally. These batteries, which were previously imported, are now
manufactured to supply the electric buses assembled in Campinas. In
addition to localizing production, BYD also consolidates its R&D efforts
locally, collaborating with local universities and research institutes to
adapt its technologies to Brazil's local conditions and requirements. This
collaborative approach allows BYD to access and incorporate existing
local technological competencies, fostering synergy with the local
technological ecosystem.'”

In this case, Brazil benefits in various ways from participating in the

19 For a more detail discussion, please refer to https://carnegieendowment.or

g/2022/10/18/why-brazil-sought-chinese-investments-to-diversify-its-manufa
cturing-economy-pub-88194
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Table 4
Top 10 countries by network capital.

Fig. 7. Global CCMT technology diffusion network based on betweenness.

Fig. 8. Global CCMT technology diffusion network based on closeness.
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®AU

Linkage volume

Structural positionalities

Directed pairs

Weighted total degree Weighted indegree Weighted outdegree Eigenvector Betweenness Closeness

us 2.155 us 1.341 DE 1.392 us 1 us 0.0109 us 0.844 JP - US 0.493
DE 1.48 CN 0.28 Jp 1.175 DE 0.969 NL 0.0078 JP 0.793 DE - US 0.472
JP 1.204 CA 0.258 us 0.813 CH 0.965 JP 0.0071 DE 0.793 UK - US 0.132
GB 0.594 GB 0.24 GB 0.354 JP 0.956 DE 0.0056 CH 0.786 US -CA 0.112
CA 0.311 NL 0.137 KR 0.191 GB 0.91 CH 0.0049 GB 0.736 US - UK 0.11
CN 0.282 AU 0.122 NL 0.125 FR 0.905 FI 0.0046 FR 0.724 DE - CN 0.105
NL 0.261 FR 0.12 FR 0.088 SE 0.89 GB 0.0038 FI 0.716 KR - US 0.097
KR 0.232 DE 0.088 CA 0.053 NL 0.876 CN 0.0035 SE 0.71 JP - CN 0.094
FR 0.208 IN 0.075 CH 0.033 FI 0.86 FR 0.0032 NL 0.702 DE - CA 0.066
AU 0.122 IT 0.073 SE 0.025 CN 0.815 IE 0.0031 CN 0.676 DE - CA 0.057
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Table 5
Regression results (n = 173).
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Variable Dependent variable: Log renewable electricity production per capita

1 2 3 4 5 6
Weighted total degree (log) 0.142%*

(0.063)
Weighted indegree (log) 0.147**

(0.065)
Weighted outdegree (log) 0.086*
(0.046)
Eigenvector (log) 0.478%**
(0.177)
Closeness (log) 0.070**
(0.035)
Betweenness (log) 0.131%*
(0.063)

GDP per capita (log) 0.325** 0.329%* 0.389%* 0.308* 0.385** 0.378%**

(0.158) (0.158) (0.152) (0.156) (0.152) (0.152)
Policy support (dummy) 0.527 0.519 0.793** 0.410 0.790%** 0.791**

(0.383) (0.385) (0.365) (0.390) (0.364) (0.364)
Government's administrative capacity (log) 0.907* 0.919* 0.816 0.891* 0.790 0.807

(0.525) (0.526) (0.530) (0.522) (0.530) (0.528)
Constant -11.279 —11.281 —11.744 —11.031 —11.936 —11.040
Adjusted R-squared 0.305 0.304 0.298 0.313 0.300 0.301

Note: Standard error in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1. We log-transform all the variables to produce normally distributed model residuals.
Additionally, a small constant is added to variables with zero value before log-transform to address the presence of zeros in the dataset.

global electric vehicle production networks. First, local manufacturing
of eco-friendly products like electric buses and cost-effective solar panels
directly contributes to Brazil's emission reduction goals. Additionally,
policies encouraging MNCs like BYD to source from local suppliers
stimulate domestic manufacturing, foster learning, and facilitate inno-
vation localization. Furthermore, active engagement in sustainable
innovation networks can advance local industrial ecosystems, present-
ing Brazil with opportunities to be more integrated into knowledge-
intensive supply chains (Hiratuka, 2022).

Regarding the control variables, countries with stronger economic
performance are more inclined to generate electricity from renewable
resources, which align with previous research on clean technology
diffusion. Given that CCMT development requires significant inputs of
human capital and financial resources, its development tends to be more
feasible for economically prosperous nations. Additionally, the results
indicate that countries that have implemented climate change mitiga-
tion policies tend to exhibit stronger performance in CCMT develop-
ment. These policies not only reflect a country's commitment to
environmental conservation and clean technology development, but
also play a regulatory role in shaping the nation's industrial strategies
and standards. Finally, the results indicate the positive impact of a
government's administrative capacity in fostering CCMT development,
emphasizing the crucial role of a supportive regulatory environment in
driving progress in this field.

6. Conclusion

Given the magnitude of the sustainability target flux, current liter-
ature and policy debates place significant emphasis on the role of CCMTs
in achieving net-zero carbon emission goals. In this paper, we contribute
to this discussion by constructing the global diffusion networks of
CCMTs and assessing the impact of network capital on CCMT develop-
ment. We argue that, beyond domestic factors, a country's progress in
CCMT development is also influenced by various forms of network
capital embedded within the global CCMT diffusion networks. Our
findings demonstrate that countries, that establish stronger connections
with global CCMT diffusion networks through sustainable innovative
MNGs, tend to exhibit superior performance in CCMT development.

Specifically, we first identified the top 228 sustainable innovation
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MNCs using CCMT-related patent data up to and including the year
2021. Next, we constructed the global CCMT diffusion networks repre-
sented by weighted intra-firm networks of these 228 MNCs. These net-
works took into account several factors, including the number of MNCs a
country hosts, the sustainable innovation capacities of these MNCs, as
well as their business scales. Subsequently, we quantified various as-
pects of network capital for each country within these networks with
respect to linkage volumes and structural positionalities. Finally, we
incorporated these network capital measures into the econometric
regression models to investigate the extent to which network capital
may influence CCMT development on a national level.

Among the key findings, the network statistical analysis reveals a
global disproportionate pattern of CCMT diffusion network, wherein
only a small group of countries holds the majority of CCMT resources.
Nonetheless, countries exhibited varying performance across different
network capital metrics. Regarding the econometric regression out-
comes, we identified positive effects associated with various forms of
network capital, highlighting the pivotal role of transnational technol-
ogy diffusion in advancing CCMT development.

Our findings have several important policy implications. First, a
country's CCMT development benefits from the presence of sustainable
innovation MNCs, whether they host their headquarters or establish
subsidiaries within the country. Consequently, policymakers should
proactively seek to attract MNCs possessing strong innovation capacities
in CCMTs. This can be achieved by incentive-based policies focused on
attracting foreign investment in domestic clean technology innovation
activities such as financial measures include tax benefits, grants, sub-
sidies, and interest-reduced loans. These measures lower the costs
associated with development projects and simultaneously mitigate the
risks of foreign investment for MNCs. Meanwhile, governments can also
establish investment promotion agencies to assist MNCs with location
selection, talent recruitment, and financing. Moreover, countries can
increase their appeal by fostering a regulatory environment that en-
courages competition, protects intellectual property rights, and sim-
plifies business registration process. Such favorable regulations can
boost MNCs' confidence and alleviate concerns related to cross-border
technology transfer.

In addition to incentive-based policies, countries can also leverage
capacity-building strategies to enhance their competitiveness in
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attracting CCMT-related investment. First, nations can identify their
existing technological and knowledge strengths to prioritize the devel-
opment of certain CCMT industries. Simultaneously, investments in
infrastructure, higher education, public services, and amenities that are
necessary for CCMT innovation activities should be made. This
strengthens the country's expertise in these technologies and fosters
international collaborations with MNCs. Furthermore, besides devel-
oping technologies directly belonging to CCMTs, countries can explore
their existing capacities that are relevant to CCMTs. Enhancing these
related capacities facilitates them to enter new specializations within the
CCMT domains. To leverage on network capital, policymakers can
employ network analysis, as demonstrated in this paper, to precisely
identify their countries' global positions within the CCMT diffusion
networks. This involve assessing existing MNC investment, available
international capital, and connections with other countries through
these MNCs. Once existing capacities as well as international linkages
are identified, policymakers can strategically focus on developing these
complementary capacities.

Third, the findings highlight the potential for intermediary countries
to acquire valuable relational assets due to their structural proximity to
other key CCMT innovators. These intermediary countries, positioned as
hubs and gateways within the diffusion networks, are well-placed to
benefit from knowledge flows and information exchanges, functioning
as hubs where interdisciplinary knowledge converge. This is primarily
because MNCs need to engage with diverse local stakeholders when
exploring new markets. Such collaborative engagement not only facili-
tates knowledge dissemination from headquarters to the subsidiary lo-
cations but also stimulates the generation of new knowledge as
technologies are adapted to local contexts. In this regard, policymakers
should consider establishing various communication platforms, such as
regular conventions and incubators. These platforms can effectively
facilitate interactions among different stakeholders and sectors,
fostering an environment where various forms of knowledge synergize.

There are several limitations in our study. First, we measured CCMT
diffusion using intra-firm relationships which did not consider knowl-
edge exchanges and spillovers between firms. Future studies could
incorporate indicators capturing inter-firm relationships like mergers
and acquisitions, and joint ventures to measure the strength of knowl-
edge flows between companies. Second, our analysis was conducted at
the national level. Yet, within a single country, there can be significant
regional disparities in CCMT development, spatial concentrations of
MNCs, industrialization levels, and industrial strategies. Conducting

Appendix A. Countries or regions included in this analysis
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studies at finer spatial scales can provide a deeper insight into this
regional heterogeneity, allowing for more locally tailored policy rec-
ommendations that can address the unique contextual challenges and
opportunities within each region. Third, we employed CCMT-related
patent data up until and including 2021 to identify sustainable inno-
vation MNCs. However, our analysis relied solely on corporate owner-
ship and the geographical information of these MNCs' headquarters and
subsidiaries as of 2021. This failed to account for changes that might
have occurred during the study period, including those that might have
influenced network capital calculation. Changes in corporate owner-
ship, such as mergers and acquisitions, and restructuring can signifi-
cantly impact a company's innovation strategies and practices within the
CCMT domain. Moreover, we examined the entire patent category Y02/
Y04S without differentiating across its nine sub-classifications. Different
CCMTs may exhibit distinct diffusion dynamics due to factors like
market demand and technological complexity. Future studies can
investigate individual sub-classifications within CCMTs to gain deeper
insights into the global landscape of sustainable innovation and inform
targeted strategies for promoting the diffusion of specific CCMTs.
Finally, this study utilized the network as an outcome for nodal-level
analysis. Future research could investigate the formation and evolu-
tion of networks using models such as the exponential random graph
model. These models facilitate the simultaneous modeling of the
endogenous structural characteristics of a network along with the
impact of exogenous variables.
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Country/ region Country/ region code

Outgoing linkages

Incoming linkages Number of CCMT-related patents

Afghanistan AF
Albania AL
Algeria DZ
Andorra * AD
Angola AO
Antigua and Barbuda AG
Argentina AR
Armenia AM
Aruba AW
Australia AU
Austria AT
Azerbaijan AZ
Bahrain BH
Bangladesh BD
Barbados BB
Belarus BY
Belgium BE
Benin BJ
Bermuda * BM
Bhutan BT

13

(=]

OO ONOOOODOWHOOOOO OO O

2 0
15 0
68 0
1 0
29 0
2 0
304 0
4 0
2 0
1,891 25
476 617
19 0
24 0
43 0
34 0
28 0
566 892
11 0
183 0
1 0

(continued on next page)
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(continued)
Country/ region Country/ region code Outgoing linkages Incoming linkages Number of CCMT-related patents
Bolivia BO 0 20 0
Bosnia and Herzegovina BA 0 51 0
Botswana BW 0 27 0
Brazil BR 0 1,135 0
British Virgin Islands VG 0 90 0
Brunei BN 0 13 0
Bulgaria BG 0 137 0
Burkina Faso BF 0 9 0
Burundi BI 0 1 0
Cambodia KH 0 23 0
Cameroon CM 0 15 0
Canada CA 4 3,075 1,778
Cape Verde cv 0 3 0
Cayman Islands KY 0 176 0
Chad TD 0 2 0
Chile CL 0 303 0
China Mainland CN 6 4,455 3,255
Colombia Co 0 238 0
Costa Rica CR 0 73 0
Croatia HR 0 120 0
Cuba CU 0 4 0
Curagao * CY 0 34 0
Cyprus cw 0 19 0
Czech Republic Cz 0 376 0
Democratic Republic of the Congo CDh 0 14 0
Denmark DK 3 380 1,985
Djibouti DJ 0 2 0
Dominica DM 0 5 0
Dominican Republic DO 0 33 0
Ecuador EC 0 70 0
Egypt EG 0 204 0
El Salvador SV 0 30 0
Equatorial Guinea GQ 0 1 0
Eritrea ER 0 2 0
Estonia EE 0 85 0
Ethiopia ET 0 5 0
Federated States of Micronesia * FJ 0 2 0
Fiji FO 0 1 0
Finland FI 3 278 1,237
France FR 10 1,475 6,077
Gabon GA 0 9 0
Gambia * GM 0 3 0
Georgia GE 0 11 0
Germany DE 26 2,213 22,967
Ghana GH 0 39 0
Gibraltar * GI 0 20 0
Greece GR 0 212 0
Guatemala GT 0 59 0
Guinea GN 0 10 0
Guyana GY 0 1 0
Haiti HT 0 1 0
Honduras HN 0 23 0
Hong Kong SAR, China HK 0 649 0
Hungary HU 0 301 0
Iceland IS 0 11 0
India IN 1 986 155
Indonesia D 0 492 0
Iran IR 0 34 0
Iraq 1Q 0 14 0
Ireland IE 3 535 1,570
Israel IL 0 219 0
Italy IT 1 1,068 129
Ivory Coast * CI 0 24 0
Jamaica JM 0 8 0
Japan JP 77 541 46,529
Jordan JO 0 17 0
Kazakhstan Kz 0 67 0
Kenya KE 0 76 0
Kosovo XK 0 5 0
Kuwait Kw 0 10 0
Kyrgyzstan KG 0 1 0
Laos LA 0 7 0
Latvia LV 0 61 0
Lebanon LB 0 26 0
Lesotho LS 0 1 0
Liberia LR 0 10 0

(continued on next page)
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(continued)
Country/ region Country/ region code Outgoing linkages Incoming linkages Number of CCMT-related patents
Libya LY 0 2 0
Liechtenstein * LI 0 6 0
Lithuania LT 0 66 0
Luxembourg LU 0 488 0
Macao SAR, China MO 0 7 0
Macedonia MK 0 32 0
Madagascar MG 0 7 0
Malawi MW 0 6 0
Malaysia MY 0 808 0
Mali ML 0 4 0
Malta MT 0 49 0
Marshall Islands * MH 0 62 0
Mauritania MR 0 2 0
Mauritius MU 0 51 0
Mexico MX 0 1,163 0
Moldova MD 0 7 0
Monaco * MC 0 3 0
Mongolia MN 0 7 0
Montenegro ME 0 17 0
Morocco MA 0 164 0
Mozambique MZ 0 27 0
Myanmar MM 0 45 0
Namibia NA 0 32 0
Nepal NP 0 1 0
Netherlands NL 7 1,702 4,631
New Zealand NZ 0 235 0
Nicaragua NI 0 18 0
Niger NE 0 1 0
Nigeria NG 0 86 0
Norway NO 0 330 0
Oman OM 0 37 0
Pakistan PK 0 70 0
Palestine PW 0 1 0
Panama PA 0 128 0
Papua New Guinea PG 0 22 0
Paraguay PY 0 26 0
Peru PE 0 129 0
Philippines PH 0 335 0
Poland PL 0 606 0
Portugal PT 0 412 0
Qatar QA 0 35 0
Republic of Serbia RS 0 121 0
Republic of the Congo CG 0 10 0
Romania RO 0 270 0
Russia RU 0 555 0
Rwanda RW 0 6 0
San Marino * SM 0 4 0
Saint Kitts and Nevis KN 0 1 0
Saint Lucia LC 0 7 0
Saint Vincent and the Grenadines vC 0 2 0
Samoa WS 0 6 0
Saudi Arabia SA 0 188 0
Senegal SN 0 22 0
Seychelles SC 0 3 0
Sierra Leone SL 0 2 0
Singapore SG 0 943 0
Slovakia SK 0 234 0
Slovenia SI 0 120 0
Solomon Islands SB 0 1 0
South Africa ZA 0 540 0
South Korea KR 11 647 12,639
Spain ES 0 1,010 0
Sri Lanka LK 0 38 0
Sudan SD 0 5 0
Suriname SR 0 1 0
Swaziland SZ 0 5 0
Sweden SE 5 620 2,485
Switzerland CH 5 637 2,224
Syria SY 0 4 0
Taiwan, China ™ 1 401 75
Thailand TH 0 906 0
The Bahamas BS 0 58 0
Togo TG 0 5 0
Tonga * TO 0 1 0
Trinidad and Tobago T 0 29 0
Tunisia N 0 85 0
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(continued)
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Country/ region Country/ region code

Outgoing linkages

Incoming linkages Number of CCMT-related patents

Turkey TR
Uganda uG
Ukraine UA
United Arab Emirates AE
United Kingdom GB
United Republic of Tanzania TZ
United States of America us
Uruguay uy
Uzbekistan uzZ
Venezuela VE
Vietnam VN
Zambia M
Zimbabwe W

0 465 0
0 11 0
0 259 0
0 298 0
8 3,600 4,474
0 40 0
51 21,637 31,972
0 109 0
0 14 0
0 135 0
0 340 0
0 22 0
0 28 0

" Countries/regions included in statistical network analysis but excluded from econometric regression analysis.

Appendix B. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.eneco.2024.107497.
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The escalating concentration of atmospheric carbon dioxide presents a critical challenge in mitigating climate
change, necessitating more efficient and verifiable carbon sequestration strategies. This review critically ex-
amines the integration of Internet of Things (IoT), Artificial Intelligence (AI), and blockchain technologies as a
novel, synergic framework to enhance the efficacy, scalability, and transparency of carbon sequestration pro-
cesses. IoT systems facilitate high-resolution, real-time environmental data acquisition is essential for monitoring
carbon fluxes. AI methodologies enable advanced data analytics, predictive modeling, and optimization of
carbon capture and storage mechanisms. Concurrently, blockchain technology provides a secure and immutable
platform for transparent carbon accounting and verification. The article synthesizes current advancements and
presents case studies that demonstrate practical applications and outcomes. Ethical considerations, technical
limitations, and regulatory challenges are critically analyzed. Future research directions include the refinement
of sensor networks, the development of adaptive machine learning algorithms, and the evolution of decentralized
ledger systems tailored to environmental data. This integrated technological paradigm holds substantial potential
to enhance carbon sequestration efforts, thereby contributing meaningfully to global climate change mitigation

strategies.

1. Introduction

In recent times, the escalating impacts of climate change have
brought forth an urgent need for innovative solutions (Agbor et al.,
2023). Addressing the rise in global temperatures, mitigating extreme
weather events, and preserving vulnerable ecological systems have
become imperatives of paramount importance (Lopez-Gomez et al.,
2023). At the crux of this challenge lies the vital task of efficient carbon
sequestration, a linchpin in our collective endeavour to stabilize
greenhouse gas concentrations and avert potentially catastrophic con-
sequences (Kazemian and Shafei, 2023).

While traditional methods of carbon sequestration have played a
crucial role, they grapple with logistical, financial, and technological
constraints (Denich et al., 2019). These established approaches reveal
their limitations when confronted with the monumental scale of the task
before use (Chen et al., 2022).

In response, a new wave of transformative technologies has emerged,
reshaping the landscape of carbon sequestration (Snabjornsdottir et al.,

* Corresponding author.
E-mail address: hossein.madi@psi.ch (H. Madi).

https://doi.org/10.1016/j.egyr.2025.05.042

2020). This paradigm shift is propelled by the convergence of three
pioneering forces: AI (Chen et al., 2023a), IoT (Mishra and Singh, 2021),
and blockchain (Chen et al., 2023b). Together, they offer an unprece-
dented opportunity to transcend the boundaries of conventional
sequestration methods.

This review article embarks on an exploration of the interplay be-
tween these cutting-edge technologies, uniting in a concerted effort to
combat climate change. This endeavour transcends disciplinary
boundaries, drawing from the realms of computer science, environ-
mental engineering, and blockchain technology to forge a path forward.

Over the ensuing sections, we will embark on a journey through the
distinct roles that Al, IoT, and blockchain play in advancing carbon
sequestration. From the real-time data acquisition facilitated by the
expansive networks of IoT to the predictive power of Al-driven models,
and the immutable transparency provided by blockchain, these tech-
nologies combine forces to confront the intricate challenges of carbon
management.

Yet, their true potential lies not in isolation, but in the seamless
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integration into a cohesive ecosystem. This amalgamation holds the
promise of unlocking hitherto uncharted dimensions of efficacy, her-
alding a paradigm shift in our collective ability to combat climate
change.

As we navigate this transformative terrain, we are acutely aware of
the ethical and privacy considerations that accompany such progress.
Balancing the imperative for technological innovation with the preser-
vation of individual rights and liberties is a paramount facet of this
evolving landscape.

In the pages that follow, we traverse this uncharted territory, pro-
pelled toward a future where carbon sequestration transcends its sci-
entific imperative to become a resounding technological triumph.

1.1. Novelties

The motivation for this research stems from the urgent need for more
effective, scalable and transparent solutions to mitigate climate change.
Traditional methods of carbon sequestration are often limited by in-
efficiencies, lack of real-time data, and inadequate transparency. By
integrating Al, IoT, and blockchain, this article seeks to address these
limitations, offering a cohesive, data-driven approach to carbon man-
agement that is both more efficient and trustworthy. The innovative
application of these technologies promises to not only improve the
current state of carbon sequestration but also provide a roadmap for
future advancements that could play a critical role in combating climate
change.

e Integration of Cutting-Edge Technologies in carbon sequestra-
tion: This article pioneers the integration of Al IoT, and blockchain
in the domain of carbon sequestration, an area traditionally
approached with less technological sophistication. By combining
these advanced technologies, the article proposes a forward-thinking
solution that addresses the multifaceted challenges of carbon man-
agement in real-time, offering greater scalability, efficiency, and
accountability than existing methods.

Synergistic potential for climate change mitigation: The article
emphasizes how the synergy between Al, IoT, and blockchain can
create a more robust and adaptive framework for carbon sequestra-
tion. The novel approach provides not only technical solutions but
also a holistic strategy that enhances the overall effectiveness of
sequestration efforts. This integrated approach has the potential to
outperform traditional methods, offering significant improvements
in monitoring, optimization, and verification.

Real-Time Monitoring and Data Collection with IoT: A key
innovation in this work is the application of IoT for real-time
monitoring and data acquisition, enabling continuous, dynamic
tracking of carbon sequestration projects. This technology facilitates
timely and highly accurate assessments of sequestration activities,
enhancing decision-making processes and improving the overall
management of carbon capture efforts.

e Al-Driven Optimization and Prediction Models: The application
of Al in the optimization and prediction of carbon capture and
storage represents a cutting-edge solution to enhance the efficiency
of sequestration efforts. Machine learning algorithms offer the po-
tential for more precise and adaptable strategies. This ensures that
carbon capture efforts are not only more efficient but also tailored to
evolving environmental and operational conditions.

Transparent carbon accounting with blockchain: One of the most
significant innovations in this article is the use of blockchain tech-
nology to ensure transparent, immutable, and verifiable carbon ac-
counting. This innovation addresses long-standing concerns over the
integrity of carbon credit systems and project reporting, reducing the
risk of fraud, inaccuracies, and double-counting. It ensures that
sequestration efforts are auditable and traceable, providing stake-
holders with confidence in the accuracy and legitimacy of carbon
reduction claims.
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e Case Studies and Demonstrations: The inclusion of real-world case
studies and demonstrations provides concrete examples of successful
projects that have leveraged the combined power of Al, IoT, and
blockchain for carbon sequestration. This practical application re-
inforces the feasibility and effectiveness of the proposed approach.
Ethical and Privacy Considerations: The article acknowledges and
addresses the ethical and privacy implications associated with the
deployment of these technologies. This recognition reflects a con-
scientious approach to the potential societal impacts of the proposed
solutions.

Comprehensive Overview and Future Directions: The article not
only provides an in-depth exploration of the current state of these
technologies in carbon sequestration but also offers insights into
future research directions and potential advancements. This
forward-looking perspective contributes to the ongoing discourse on
climate change mitigation.

These novelties collectively position the review article as a signifi-
cant contribution to the field, offering a comprehensive and forward-
thinking perspective on the integration of Al, IoT, and blockchain in
carbon sequestration efforts.

2. Carbon sequestration techniques and challenges

Carbon sequestration stands as a critical component in our fight
against climate change, aiming to capture and store atmospheric carbon
dioxide (CO3) in various natural or engineered reservoirs. Understand-
ing the range of techniques and challenges associated with carbon
sequestration is pivotal in formulating effective and sustainable strate-
gies.

2.1. Natural carbon sequestration methods

2.1.1. Afforestation and reforestation

One of the most recognized natural methods for carbon sequestration
involves afforestation, the deliberate establishment of forests in previ-
ously non-forested areas, and reforestation, the restoration of depleted
or degraded forests (Lal, 2005). These processes harness the
carbon-absorbing power of trees, which accumulate CO, through
photosynthesis, storing it in their biomass and in the soil (Gorte, 2009).
Through these methods, we have the potential to sequester substantial
amounts of carbon over time. Based on the study developed by Burke
et al. (2021), it is possible to map the existing barriers towards affor-
estation in different parts of the world and obtain the afforestation
capability of each region based on that. Burke et al. (2021) showed the
example of the UK based on different scenarios as illustrated in pFig. 1.
As shown in this figure, 4.7 million ha will be available for planting for
the UK, but the problem is the sustainability goals set by the UK to reach
the carbon neutrality by 2050. Based on those, the UK needs to use 21 %
of the available land with limited woodland expansion.

2.1.2. Ocean-Based Sequestration

Our oceans play an invaluable role in carbon sequestration. Phyto-
plankton and marine organisms absorb CO, from the atmosphere, and
carbon is subsequently transported to the deep ocean through the bio-
logical pump process (Buesseler et al., 2007). Additionally, researchers
are exploring techniques such as ocean alkalinity enhancement, a form
of geoengineering, as a means to augment carbon uptake in the oceans
(Renforth and Henderson, 2017).

Regarding the carbon sequestration in the ocean, Shen et al. (2020)
emphasized on the harmful roles of microplastics as shown in pFig. 2.
The existence of microplastics in the ocean have adverse impacts on the
growth and photosynthesis of phytoplankton and zooplankton leading
to harmful results in their community and instability in the marine
ecosystem. As shown by Sjollema et al. (2016), phytoplankton’ photo-
synthetic rates will be reduced by 45 % after exposure to the
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Fig. 1. The illustrated map by Burke et al. (2021) on the restrictive scenario for the afforestation of the UK. As shown, the white color mentions that there are no
constraints, hence available for planting. The green indicator of the map demonstrates the potential for afforestation considering the existing barriers (Copyright
license number: 5791630052614). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. The illustrated carbon sequestration cycle in the ocean by Shen et al. (2020), where, DOC is Dissolved Organic Carbon, POC is the particulate organic carbon,
LPOC is the labile dissolved organic carbon, and RPOC is the recalcitrant dissolved organic carbon. Phytoplankton and Zooplankton have important role in the carbon
sequestration cycle in the ocean which will be affected negatively by the existence of microplastics. (Copyright license number: 5795461271415).

microplastics (250 mg/L). The reason is due to the combination and
aggregation of the phytoplankton to the decomposed microplastics.

2.2. Engineered carbon sequestration technologies

2.2.1. Direct air capture (DAC)

Emerging as a promising technology, DAC involves mechanically
extracting CO, directly from ambient air. This method is gaining trac-
tion for its potential to capture CO, emissions directly from industrial
sources or from the atmosphere itself (Lackner, 2003). A common usage
of DAC systems is to be integrated to the Solid Oxide Electrolysis Cells
(SOEC) to improve the efficiency and the overall goal of carbon capture
as shown in pFig. 3 (Coppitters et al., 2023). Nonetheless, DAC faces
challenges related to energy consumption and cost-effectiveness
(Zeman, 2007). The system shown by Coppitters et al. (2023) is inter-
esting specifically due to the size, which is double the existing com-
mercial solid sorbent DAC units, with up to 4000 tCO /year. In the
adsorber of this system, carbon dioxide and water are adsorbed at
ambient conditions. The sorbent will be regenerated at a desorption
temperature of water boiling temperature at the saturated conditions
that will result in a gas outlet stream.

2.2.2. Carbon capture and storage (CCS)
CCS represents a pivotal technology involving the capture of CO,
emissions from industrial processes or power plants, followed by injec-
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tion into geological formations for long-term storage (Change, 2014).
This technology is considered vital in reducing emissions from large
point sources (Bui et al., 2018). However, it encounters challenges
including the identification of suitable storage sites, ensuring long-term
containment, and addressing public acceptance (Steffe and Gale, 1995).
Based on the developed study by Deutz and Bardow (2021), in 2019,
3683 DAC plants with the capacity of 100,000 tCOy/year were needed
to capture one percent of the global annual Carbon Dioxide production.

2.3. Challenges in carbon sequestration

While these techniques hold promise, they are not without their
challenges. pTable 1 presents the main existing challenges with the
required description.

Addressing these challenges necessitates collaborative efforts across
disciplines, bringing together scientists, engineers, policymakers, and
stakeholders to advance the field of carbon sequestration and contribute
to global climate goals.

3. The convergence of IoT and carbon sequestration

The innovative intersection of IoT technology and carbon seques-
tration presents a revolution in how the vital task of capturing and
storing carbon emissions can be approached. The collaboration between
the IoT and the carbon sequestration processes promises to significantly



H. Pourrahmani et al.

Energy Reports 13 (2025) 5952-5967

10 MW, e ;
w
= ez
end use
606 kg/h
340 kg/h
1620 kg'h |
—l 180 kg/h Pl 1018 kg/h, 227 °C, 8 bar
electrolysis | 80°C 946 k”_;']‘ N e
10 bar 493 °C
L\ 1 86 bar | 417 kg |
10.49 MW, L v
| A T | = ; 5.1 MW
H;0 1504 kg -
3 : SNG
" methanation
. . 7l
unit 520 kg/h
0.25 MW, MVR
990 kg,,/h
1o c P N 1624 kg/h
0,24 MW, 10 bar : = 296 °C
1.21 MW, Gia:
3 | — 1 w2
depleted air | air X 3
| ; DAC _ 1 AT *
? :l {25
(-lj'_'— = 80% RH
H,O 2475 t/h

1.17 MW

th

w2

CXCCSS

Fig. 3. A schematic of integrated DAC unit to the Solid Oxide Electrolysis Cell (SOEC) illustrated by Coppitters et al. (2023). The heat flows and the excess heat
during methanation are also shown. The excess heat will be partially used to provide the remaining heat demand for the DAC through a condenser. (Copyright license

number: 5795550875235).

Table 1
The main challenges in the carbon sequestration.

Challenge Description

Economic viability Many carbon sequestration methods face economic
barriers, such as high initial costs and uncertain revenue
streams (Thamo et al., 2017).

Some methods may have unintended environmental
consequences, such as habitat disruption or alterations

in ecosystem dynamics (Houghton, 2018).

Environmental impacts

Regulatory and policy Developing effective regulatory frameworks and
frameworks policies to govern carbon sequestration activities is
critical for ensuring compliance, safety, and
accountability (Gren and Aklilu, 2016).
Technological Continued research and development are essential for
advancements improving the efficiency, scalability, and cost-

effectiveness of carbon sequestration technologies (
Fagorite et al., 2023).

Engaging communities and gaining public trust is
crucial for the successful implementation of carbon
sequestration projects (Tcvetkov et al., 2019).

Public Perception and
Acceptance

enhance the effectiveness and efficiency of our efforts in carbon capture
and storage.

3.1. Empowered monitoring with real-time data

By locating sensors across sequestration sites to continuously
communicating the main servers with data streams on key parameters
like CO, levels, temperature, pressure, and soil conditions (Bui, 2020),
the carbon sequestration process can be improved. This real-time data
allows spotting the changes as they happen, enabling quick responses.
For instance, if CO, concentrations or environmental conditions shift
suddenly, automated adjustments can kick in to optimize the seques-
tration process. One of the similar projects in this field was developed by
Li et al. (2019), where the ecosystem of soil including air, water, soil,
carbon, and the ratio of 13 C and 12 C carbons were monitored using
IoT-based systems as shown in the proposed structure in pFig. 4. This

suggested structure is made of three main steps, which are making smart
ecosystem monitoring devices, networking the devices and integrating
them with the information system using the IoT, and testing the appli-
cability of the ecosystem monitoring IoT in a variety of typical
ecosystems.

3.2. Fine-tuning through advanced analytics and Al

Powerful analytics and machine learning algorithms (Fuss et al.,
2018) should be implemented to enable the data streaming through IoT.
The role of these machine learning algorithms is to uncover patterns,
relationships, and irregularities. The AI allows fine-tuning sequestration
operations. Al-driven models can predict the perfect injection rates,
adjust for geological quirks, and minimize the risk of leaks based on
real-time sensor feedback.

3.3. Providing early warnings for system protection

IoT systems have become vigilant guardians, raising the alarm if
anything strays from the expected sequestration performance (Pidgeon
et al., 2013). Anomalies in the data patterns can signal potential issues,
like a potential breach in containment integrity or unexpected envi-
ronmental influences. This timely heads-up empowers us to take swift
corrective action, keeping the sequestration process safe and effective.

3.4. Remote monitoring: a digital blessing

With IoT in action, the sequestration sites can be monitored
remotely. This is particularly invaluable for projects spread across
diverse geographic locations. Maintenance schedules and interventions
can be planned in advance strategically, guided by real-time data trends.
In other words, IoT can act as a virtual team of experts on the ground,
optimizing resource allocation (Steffe and Gale, 1995). As an example,
Rajak et al. (2023). Integrated IoT and smart sensors for the optimized
crop growth and remote monitoring, as shown in pFig. 5. Electrome-
chanical sensors, biosensors, and physical property sensors have key
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Fig. 4. The novel structure for the IoT based real-time control of ecosystem parameters proposed by Li et al. (2019). (Copyright license number: 5798951371163).
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levels, and water content (Rajak et al., 2023). The pest control can be done using advanced cameras, and unmanned aerial vehicles will help to control the crop
growth. (Copyright license number: Open access under a Creative Commons License).
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usages in agricultural fields. Biological sensors enable biological sensi-
tive components from the outside world, but physical property sensors
employ devices sensitive to alterations in the physical environment.

3.5. Mindful of ethics and privacy

In addition to the technological aspects, the ethical and privacy
considerations should be included as well (Renforth and Henderson,
2017). It’s essential to safeguard individual rights and liberties while
technological innovations are progressed. While the convergence of IoT
and carbon sequestration represents a major leap forward, challenges
may arise. Issues related to data security may be encountered in addition
to the sensor reliability or ensuring that IoT devices can communicate
seamlessly.

The integration of IoT technology into carbon sequestration projects
marks a significant shift, offering a dynamic and data-driven framework
for optimizing the efforts. By uniting interconnected sensors with
advanced analytics, a new level of precision and adaptability in carbon
capture and storage will be unlocked that creating a more sustainable
and resilient future.

4. Al-driven optimization and prediction models

The inclusion of AI into carbon sequestration projects stands as a
game-changer. Al brings a powerful set of tools to the table, using al-
gorithms and machine learning to dissect complex datasets, spot trends,
and make educated predictions. The implementation of this technology
in carbon capture and storage unlocks a new level of precision and
efficiency.

4.1. Seeing the future with AI

AT’s real talent lies in foreseeing outcomes based on historical data
(Fuss et al., 2018). In carbon sequestration, this means Al can help to
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understand how factors like injection rates, geological conditions, and
environmental variables will affect the sequestration efforts. Al enables
real-time monitoring in addition to making sure that the entire process is
running optimally.

4.2. Adaptability at its core

One of the most amazing things about Al is its ability to learn and
adapt as it encounters new data (Bui, 2020). By the progress of carbon
sequestration projects, Al continuously fine-tunes its understanding of
the system. This adaptability ensures that the sequestration process
becomes more efficient over time. The developed project by You et al.
(2020) proposed the usage of machine learning to enable the optimi-
zation of CO- sequestration and oil recovery processes. PFig. 6 Shows the
suggested algorithm to achieve this goal. Based on the work by You et al.
(2020), a field-scaled numerical simulation model was structured to
analyzed the fluid dynamics of an actual CO, sequestration project in the
Farnsworth unit in Texax. In that model, Al based proxy models are
developed to predict time-series project responses including hydrocar-
bon production, CO, storage, and reservoir pressure data. The outputs of
the proxy model were also providing physical and economic constraints
for the optimization of the oil recovery and the CO, sequestration
volume.

4.3. Navigating complexity

Carbon sequestration is a complex puzzle with numerous variables,
each influencing the overall outcome. Al acts like a puzzle-solver,
uncovering intricate relationships between factors that might not be
immediately obvious. This skill is invaluable in optimizing injection
strategies, selecting the right storage sites, and managing potential risks
tied to geological formations.
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Fig. 6. The proposed algorithm by You et al. (2020) for the optimization of CO, sequestration and oil recovery processes. The algorithm starts with particle swarm
optimization (PSO) followed by matching history with the produced data and including the multi-layer neural network to develop the proxy models that will be used
in the optimization. PSO as a representative of a metaheuristic algorithm has the responsibility of reaching the optimized values while the neural model will be a
representative of the physical phenomena of carbon storage and oil production. (Copyright license number: 5799010204293). Here RBF indicates the Radial
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4.4. Identifying and managing risks

Al excels at risk assessment, spotting potential challenges and vul-
nerabilities in sequestration projects (Pidgeon et al., 2013). By sifting
through historical data and simulating different scenarios, Al points out
areas of concern and suggests ways to address them. This proactive
approach minimizes the chances of unexpected setbacks, ensuring the
sequestration efforts proceed with confidence. In the study developed by
Al-Sakkari et al. (2024), Al was used as a tool to smooth the carbon
sequestration operation by predicting the leakages of carbon dioxide, as
shown in pFig. 7. This operation will be based on using AI for the
diagnosis and prognosis of carbon dioxide leakage from sequestration
wells based on infrared imaging and seismic visualizations under human
supervision.

4.5. Always getting better

Al fosters a culture of ongoing improvement. As more data is gath-
ered, the models become sharper and more sophisticated (Renforth and
Henderson, 2017). This process of continuous learning and refinement
leads to innovative strategies for carbon sequestration. It’s an invitation
to explore new approaches and technologies that could further enhance
the sequestration outcomes.

4.6. Harmony with IoT and blockchain

The combination of AI, IoT, and blockchain technologies packs a
powerful punch in carbon sequestration. Al uses the real-time data from
IoT sensors to make dynamic decisions, while blockchain ensures the
transparency and integrity of that data. Together, they form a trio that
boosts the overall effectiveness and accountability of sequestration
projects.

In conclusion, the integration of Al-driven optimization and predic-
tion models marks a pivotal moment in the world of carbon sequestra-
tion. This technology enables informed decisions, adapts to changing
conditions, and continually refines the existing approach to enhance
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problem-solving. By tapping into the predictive capabilities of Al a path
towards more efficient and effective carbon capture and storage will be
reached, ultimately contributing to a sustainable and resilient future.

5. Blockchain for transparent carbon accounting

In the pursuit of effective carbon sequestration, the role of block-
chain technology emerges as a beacon of transparency and account-
ability. Blockchain, often associated with cryptocurrencies, proves to be
a transformative force in the realm of carbon accounting. It offers a
decentralized ledger system that records every transaction or event,
creating an immutable chain of information.

5.1. The promise of immutable records

At the heart of blockchain lies its ability to create unchangeable re-
cords (Narayanan et al., 2016). In the context of carbon sequestration,
this means every piece of data - from sequestration volumes to project
details - is etched in digital stone. This transparency leaves no room for
disputes or alterations, establishing a foundation of trust.

5.2. Enhancing accountability in carbon reporting

Blockchain ensures that every participant in the carbon sequestra-
tion process, from project developers to auditors, has access to the same
set of information. This shared ledger leaves no room for discrepancies
or hidden data. In this regard, the culture of accountability will be
improved.

One of the most critical elements of blockchain-enabled carbon ac-
counting is the use of smart contracts. These self-executing scripts stored
on the blockchain automatically trigger actions when predefined con-
ditions are met. For instance, a smart contract can be programmed to
issue a carbon credit token only when a third-party verifier uploads a
certificate confirming a sequestration milestone has been reached. This
automation reduces human intervention and the risk of manipulation,
making the carbon credit issuance process more transparent and
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trustworthy.

Blockchain systems also rely on consensus mechanisms to validate
transactions. In the context of carbon markets, Proof of Stake (PoS) is
often preferred over energy-intensive methods like Proof of Work (PoW)
to maintain environmental integrity. PoS systems validate transactions
based on participants’ stake in the network, offering faster processing
and lower energy consumption.

To ensure interoperability with carbon standards, many blockchain
platforms incorporate metadata tagging and APIs that align with
established protocols such as the Greenhouse Gas Protocol or Verra’s
Verified Carbon Standard (VCS). This allows real-time synchronization
of carbon data across different registries and enhances transparency for
stakeholders, including governments, NGOs, and the public.

Another innovation is tokenization, where each verified carbon
credit is converted into a digital token that can be traded on blockchain
platforms. These tokens are often non-fungible to preserve their unique
project characteristics, such as location, date, and methodology. Some
platforms also implement traceability layers, allowing users to follow
the lifecycle of a carbon credit, thus preventing double-counting or
resale fraud.

Despite these advantages, challenges remain in areas such as legal
recognition of blockchain records, cross-chain interoperability, and the
technical complexity of integrating on-chain (blockchain) systems with
off-chain (real-world) carbon projects. Nevertheless, the integration of
these technical features positions blockchain as a powerful tool in
building trust, scalability, and traceability in carbon accounting systems.

5.3. Tracing carbon credits with certainty

In the world of carbon markets, accurately tracking and verifying
carbon credits is paramount. Blockchain provides a streamlined mech-
anism for this. Each credit is tied to a unique, verifiable record on the
ledger (Arasteh et al.,, 2020). This ensures that credits are not
double-counted or fraudulently created, instilling confidence in the
market. In this regard, Muzumdar et al. (2022) has proposed an Emis-
sion Trading System (ETS) as shown in pFig. 8 based on two transaction
units of carbon credit (CC) and cash coin. The system operates on the
three main processes of CC buying, selling, and trading using smart
contracts.

5.4. Smart contracts for automated compliance

Smart contracts, self-executing contracts with the terms directly
written into code, add another layer of automation and transparency
(Kosba et al., 2016). They can be programmed to enforce compliance
with regulatory requirements. For example, a smart contract could
automatically retire carbon credits once they’ve been used, reducing the
risk of double-spending.
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5.5. Empowering stakeholders with real-time data

With blockchain, stakeholders can access real-time data on seques-
tration projects (Tian et al., 2019). This includes details on carbon
capture rates, storage integrity, and overall project performance. This
real-time project’s data sharing empowers stakeholders with the infor-
mation they need to make informed decisions.

5.6. Overcoming trust barriers

Trust has always been a central concern in carbon accounting.
Blockchain addresses this by removing the need for a central authority
or intermediary. Instead, trust is built into the system itself through
cryptographic verification and consensus mechanisms (Swan, 2015).
This decentralized approach fosters a more robust and reliable
ecosystem.

5.7. Challenges and considerations

While blockchain holds immense promise, it’s not without its chal-
lenges. Scalability, energy consumption, and regulatory frameworks are
areas that require careful attention (Tapscott and Tapscott, 2016).
Additionally, ensuring data privacy and security in a public blockchain
network is a critical consideration.

In essence, blockchain technology brings a new level of integrity to
carbon accounting. It introduces a level playing field where data is
transparent, unchangeable, and accessible to all stakeholders. By
leveraging blockchain’s capabilities, a path towards a more accountable
and trustworthy approach to carbon sequestration will be made.

6. Integrating technologies for synergistic impact

Navigating the frontier of carbon sequestration, it becomes evident
that the true power lies in the convergence of technologies. When Al,
IoT, and blockchain come together, they create a synergistic force that
transforms the existing approach to carbon capture and storage.

6.1. Harmonizing real-time insights with IoT

The Internet of Things is like the eyes and ears of the sequestration
projects. Sensors and devices scattered across the project site continu-
ously collect data on everything from temperature and pressure to car-
bon dioxide concentrations (Tian et al., 2019). This real-time stream of
information provides a level of insight previously unattainable. In this
regard, the real-time optimization of the system becomes feasible.

6.2. Al as the cognitive engine
Artificial Intelligence steps in as the brain of the operation. It takes

the influx of data from IoT and processes it with remarkable speed and
precision (Fuss et al., 2018). Al can identify patterns, predict future

CC selling contract CC Seller
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Fig. 8. A schematic of the suggested Emission Trading System by Muzumdar et al. (2022). (Copyright license number: 5799020384560).
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trends, and even make autonomous decisions. Al can be considered an
expert capable of analyzing vast amounts of information and distilling it
into actionable insights. In the developed project by You et al. (2020), Al
was used as a tool to predict the Oil production, and CO; storage in
sequestration projects as shown in pFig. 9.

6.3. Blockchain’s immutable record

At the foundation of this technological trinity lies blockchain,
providing an unchangeable ledger of every transaction, every data point,
and every decision (Narayanan et al., 2016). It ensures that the infor-
mation generated by IoT and analyzed by Al remains tamper-proof and
trustworthy. This is similar to have an incorruptible archive, a testament
to the integrity of the endeavors.

6.4. Smart contracts orchestrating operations

Smart contracts, powered by blockchain, serve as the orchestrators of
the sequestration efforts (Kosba et al., 2016). They autonomously
execute predefined actions based on the insights generated by Al and the
data collected by IoT. For example, if certain conditions indicate the
need for an adjustment in injection rates, a smart contract can initiate
the change. It’s akin to having a dynamic conductor, fine-tuning the
performance in real-time.

6.5. A collective intelligence ecosystem

The integration of these technologies creates an ecosystem where
each component strengthens the others. IoT feeds Al with real-world
data, empowering it to make more accurate predictions. Al, in turn,
guides the decision-making process, ensuring that actions are based on
data-driven insights. Blockchain secures the entire operation, providing
an unassailable record of every event.

6.6. Ensuring ethical considerations

While marveling at the technological prowess, the human di-
mensions must not be forgotten. Ethical and privacy considerations are
paramount (Swan, 2015). While proceeding with these integrated
technologies, a commitment should be made to safeguard individual
rights and ensuring that the innovations benefit society as a whole.

6.7. The future of carbon sequestration

This integration is more than just a technological feat; it’s a glimpse
into the future of carbon sequestration. It’s a testament to human
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ingenuity, showcasing the existing capabilities when -cutting-edge
technologies are integrated in the fight against climate change.

In this integrated landscape, not only efficiency and effectiveness is
found but also a profound sense of possibility. It’s a frontier where
technology and environmental stewardship join hands, propelling to-
wards a future where carbon sequestration is not just a scientific ne-
cessity, but a technological triumph.

7. Case studies and demonstrations

In examining the integration of IoT, Al, and blockchain technologies
in carbon sequestration efforts, several noteworthy case studies and
initiatives have emerged. These real-world projects exemplify the po-
tential for transformative impact in the fight against climate change.

e Microsoft’s Project Natick (Pellegrino et al., 2021): IoT-Enabled
Underwater Data Centers
e Microsoft’s Project Natick represents a groundbreaking initiative
that explores the feasibility of deploying data centers underwater.
Equipped with a sophisticated array of IoT sensors, these sub-
merged data centers continuously collect a wealth of environ-
mental data (Shelar et al., 2020). This includes critical parameters
such as temperature, pressure, and carbon dioxide levels. This
real-time data acquisition not only informs efficient data center
operations but also presents an innovative approach to harnessing
IoT for environmental monitoring and carbon sequestration.
o IBM’s Green Horizons Initiative (Kale and Ma, 2023): AI-Driven
Air Quality Management
e IBM’s Green Horizons Initiative is a pioneering effort that lever-
ages artificial intelligence to enhance air quality management,
particularly in urban environments. By employing advanced Al
models, the initiative processes vast amounts of data from various
sources (Li et al., 2021). These sources include IoT sensors, satellite
imagery, and other environmental monitoring systems. This
capability enables precise predictions of air quality patterns,
facilitating targeted interventions to reduce emissions and
enhance carbon sequestration efforts.
e Climate Ledger Initiative (Schulz and Feist, 2021): Blockchain for
Carbon Accounting
e The Climate Ledger Initiative is at the forefront of utilizing
blockchain technology to revolutionize carbon accounting and
emissions tracking. By employing distributed ledger technology,
the initiative ensures transparent and immutable records of carbon
credits and emissions data. This approach enhances trust and
accountability in carbon markets, offering a robust framework for
sustainable carbon sequestration strategies.
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Fig. 9. The training method used by You et al. (2020) for the optimization of CO, sequestration and oil recovery processes. The first proxy was aimed to predict oil
production and carbon dioxide sequestration while the second one had the goal of predicting the average reservoir pressure change during the lifetime of the system.
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CarbonCure Technologies (Salehi, 2023): AI-Optimized Carbon

Utilization

e CarbonCure Technologies is a trailblazer in the field, employing
artificial intelligence to optimize carbon dioxide utilization in
concrete production. Through Al-driven algorithms, the company
systematically analyzes data related to concrete mixtures and
curing processes. This enables precise control over carbon dioxide
incorporation, resulting in reduced emissions and enhanced car-
bon sequestration within construction materials.

Ocean Cleanup’s System 001 (Ramphal, 2021): IoT-Enabled Ma-

rine Plastic Removal

e The Ocean Cleanup’s System 001 stands as a testament to the
power of IoT technology in addressing the global issue of marine
plastic pollution. Equipped with an arsenal of sensors and satellite
tracking capabilities, the system continuously monitors and col-
lects data on the movement and concentration of plastic debris in
oceans. This real-time information guides the efficient deployment
of cleanup operations, contributing not only to ocean conservation
but also to carbon sequestration efforts.

Carbon Engineering’s DAC Facility

AI-Enhanced Carbon Removal

e Carbon Engineering’s DAC facility is an exemplary application of
Al-driven optimization to enhance carbon dioxide removal from
the atmosphere. Al algorithms continuously analyze operational
data to fine-tune the capture process. This dynamic adjustment
maximizes efficiency and minimizes energy consumption, exem-
plifying a cutting-edge approach to carbon sequestration.

Google’s DeepMind for Cooling Data Centers (Al Munem et al.,

2023): AI-Optimized Energy Efficiency

e Google’s collaboration with DeepMind in optimizing data center
cooling showcases the remarkable potential of Al in energy effi-
ciency. Through the application of deep reinforcement learning,
the project achieved significant reductions in energy consumption
for data center cooling. This achievement not only demonstrates
the power of Al in sustainable practices but also contributes to
carbon footprint reduction in data center operations.

Sony CSL’s OpenAl Project (Alto, 2023): AI-Enhanced Renewable

Energy Integration

e Sony Computer Science Laboratories, Inc.’s OpenAl project rep-
resents a notable endeavor to harness the power of Al in inte-
grating renewable energy sources into the electrical grid (Verma,
2021). Through the application of advanced algorithms and ma-
chine learning techniques, the project seeks to optimize the utili-
zation of renewable energy, ultimately contributing to reduced
carbon emissions in the energy sector.

Walmart’s Blockchain-Based Food Traceability (Xu et al., 2020):

Carbon Footprint Reduction

e Walmart’s pioneering use of blockchain technology in food
traceability is a multifaceted initiative with significant environ-
mental implications. By leveraging distributed ledger technology,
Walmart enables transparent and immutable tracking of food
products through the supply chain (Westerlund et al., 2021). This
not only enhances food safety but also contributes to the reduction
of carbon emissions associated with food production and
distribution.

Tesla’s Gigafactories (Cooke, 2021): Sustainable Energy Pro-

duction with AI Integration

e Tesla’s Gigafactories represent a transformative paradigm in sus-
tainable energy production. By integrating advanced
manufacturing technologies with renewable energy sources, Tesla
aims to produce electric vehicles and energy storage solutions at an
unprecedented scale. The incorporation of Al technologies within
these Gigafactories further optimizes production processes, ulti-
mately contributing to the reduction of carbon emissions associ-
ated with traditional manufacturing.

(Izikowitz, 2021):
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Maersk’s Carbon Accounting with Blockchain (Wong et al.,

2023): Maritime Industry Innovation

e Maersk, a global leader in container shipping, has embarked on a
ground-breaking initiative to leverage blockchain technology for
carbon accounting in the maritime industry. Through the appli-
cation of distributed ledger technology, Maersk aims to provide
transparent and verifiable documentation of carbon emissions
associated with shipping operations. This initiative not only en-
hances transparency but also contributes to the overall reduction
of carbon emissions in the shipping industry.

Siemens’ MindSphere IoT Platform for Industrial Sustainability

(Kulawiak, 2021)

e Siemens’” MindSphere IoT platform is a powerful tool for
advancing industrial sustainability. By integrating IoT technolo-
gies, Siemens enables comprehensive data collection and analysis
within industrial environments. This facilitates informed decision-
making for optimizing energy efficiency, reducing resource con-
sumption, and ultimately minimizing carbon emissions in indus-
trial processes.

Sprint’s IoT for Fleet Management (Zhang et al., 2020) Carbon

Emissions Reduction

e Sprint’s utilization of IoT technologies in fleet management rep-
resents a significant step towards reducing carbon emissions in
transportation. Through the integration of IoT sensors within ve-
hicles, Sprint enables real-time monitoring of key performance
metrics such as fuel efficiency and vehicle maintenance. This data-
driven approach empowers companies to make informed decisions
that lead to the reduction of carbon emissions associated with their
fleets.

Nestle’s Blockchain-Based Supply Chain Transparency (Ckacko

et al. 2021): Carbon Accountability

e Nestle’s adoption of blockchain technology for supply chain
transparency has far-reaching implications for carbon account-
ability. By leveraging distributed ledger technology, Nestle es-
tablishes an immutable record of product origin, processing, and
distribution (Schilhabel et al., 2023). This not only enhances
product traceability but also contributes to the reduction of carbon
emissions associated with supply chain operations.

Amazon’s AI-Powered Energy Optimization in Fulfillment Cen-

ters (Varghese, 2022)

e Amazon’s innovative use of Al technologies for energy optimiza-
tion in fulfillment centers demonstrates the potential for signifi-
cant carbon emissions reduction in the logistics industry. Through
the deployment of Al algorithms, Amazon optimizes energy usage
based on real-time data and operational patterns. This results in
increased energy efficiency and a corresponding reduction in the
carbon footprint of fulfillment center operations.

In addition to the above-mentioned case studies, followings are
the real systems exist for carbon sequestration:

Climeworks (Switzerland/Iceland)

e Climeworks is a company specializing in direct air capture (DAC)
technology, working with Carbfix in Iceland to mineralize
captured CO, underground. The system utilized IoT sensors for
environmental monitoring and is exploring blockchain for credit
verification.

Northern Lights Project (Norway)

e A pioneering full-scale carbon capture and storage project backed
by Equinor, Shell, and TotalEnergies. It captures CO, from indus-
trial sites, transports it via ship, and stores it under the North sea
seabed. The project is exploring digital twins and Al for opera-
tional efficiency.

CarbonCure (Canada)

e Integrates CO; into concrete production, locking it in the building
material. They’re using Al to optimize CO, usage and emissions
reduction per batch of concrete.
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These expanded case studies provide in-depth insights into successful
projects that have harnessed the combined power of IoT, Al, and
blockchain technologies for carbon sequestration. They not only
demonstrate the efficacy of these integrated approaches but also offer
valuable insights for the broader implementation of innovative tech-
nologies in the fight against climate change. pTable 2 shows a structured
categorization of each case study by organization/project, technology
used, application area, and impact on carbon sequestration or emission
reduction.

7.1. Technology implementation on local commodities and its implications

The integration of Al IoT, and blockchain technologies holds sig-
nificant potential for transforming carbon management practices in
sectors tied to local commodities. In agriculture, for instance, [oT sen-
sors can be deployed to monitor critical parameters such as soil mois-
ture, nutrient levels, and carbon content in real time. Combined with AI-
driven analytics, these systems can optimize irrigation and fertilizer
application, thereby enhancing soil health and promoting carbon
sequestration through regenerative farming practices. Blockchain tech-
nology can further support this transformation by creating transparent
and verifiable records of sustainable practices, enabling farmers to
participate in carbon credit markets. This approach not only contributes
to emissions reduction but also creates new revenue streams for rural
communities.

In forestry, which often plays a vital role in national carbon sinks, the
use of Al and IoT can significantly improve monitoring and manage-
ment. Remote sensing technologies, including drones equipped with AlI-
based image analysis, can track forest growth, health, and deforestation
activities. IoT-based ground sensors provide additional insight into soil
and ecosystem conditions. Blockchain can be used to document con-
servation efforts and carbon offset credits in a tamper-proof manner.
These technologies empower local and indigenous communities to
engage in decentralized forest management, ensuring accountability
while supporting livelihoods tied to ecosystem preservation.

Livestock and dairy farming, another key sector in many regions, can
also benefit from these technologies. IoT-enabled wearable devices can
track animal health and methane emissions, while AI models can opti-
mize feeding strategies to reduce greenhouse gas emissions. Blockchain
platforms offer transparent traceability in sustainable meat and dairy
production, thereby increasing consumer trust and market value. These
interventions collectively support a shift toward climate-smart livestock
systems, balancing productivity with sustainability.

The energy sector, particularly renewable energy initiatives such as
solar, wind, and biomass, also stands to gain from the integration of
digital technologies. AI algorithms can forecast energy demand and
optimize supply, while IoT devices continuously monitor generation
efficiency. Blockchain solutions enable the secure trading of clean en-
ergy certificates and decentralized energy transactions. Together, these
innovations enhance grid reliability and support the scaling of low-
carbon energy systems, further reducing emissions at the source.

By focusing on these locally relevant sectors, the application of
emerging technologies not only enhances carbon sequestration and
emissions management but also drives broader socio-economic benefits.
These include job creation, improved data-driven decision-making, and
increased access to sustainable development opportunities. Therefore,
the localization of technological frameworks is essential for ensuring the
long-term viability and scalability of climate mitigation efforts.

8. Policy and regulatory considerations

As the integration of IoT, Al, and blockchain technologies gains
momentum in carbon sequestration efforts, it is imperative to assess the
necessary policy and regulatory frameworks. These frameworks play a
pivotal role in providing a conducive environment for the widespread
adoption of these technologies and ensuring their effective

5963

Energy Reports 13 (2025) 5952-5967

Table 2
Summary of case studies involving Al, IoT, and blockchain for carbon
sequestration.
Project/ Technology Application area Impact on carbon
Organization used sequestration
Microsoft — IoT Underwater data Real-time
Project centers & environmental data for
Natick environmental optimizing operations;
monitoring potential use for
environmental sensing
IBM - Green Al IoT Urban air quality Al-based emission
Horizons and pollution forecasting; supports
prediction better policy and urban
planning
Climate Ledger Blockchain Carbon markets Transparent,

Initiative and accounting immutable carbon
credit tracking;
enhances trust in
carbon markets

CarbonCure Al Carbon utilization Embeds CO:z in

Technologies in concrete concrete; reduces

Ocean Cleanup
— System 001

Carbon
Engineering
(DAC)

Google —
DeepMind

Sony CSL —
OpenAl
Project

Walmart —
Blockchain
Traceability

Tesla —
Gigafactories

Maersk —
Carbon
Accounting

Siemens —
MindSphere

Sprint — Fleet
Management

Nestle — Supply
Chain
Transparency

Amazon -
Energy
Optimization

Climeworks
(w/ Carbfix)

Northern Lights
Project

CarbonCure
(also listed
above)

10T, Satellite
tracking

Al

Al

Al

Blockchain

Al, Renewable
Energy

Blockchain

IoT

IoT

Blockchain

Al

IoT, Al
Blockchain (in
progress)

Al (digital
twins)

Al

Marine plastic
removal

Direct air capture
(DAQ)

Data center cooling
Renewable energy
integration

Food supply chain

Sustainable
manufacturing

Shipping industry
carbon accounting

Industrial

sustainability
Transportation

Food supply chain

Fulfillment centers

Direct air capture
and mineralization

Industrial CCS and
offshore storage

Green building
materials

carbon footprint in
construction

Indirect impact via
cleaner oceans and
improved carbon sinks
Al optimizes CO2
capture process,
improving energy
efficiency and removal
capacity

Significant reduction
in energy use and
related emissions

Al enhances energy
distribution and lowers
fossil fuel reliance
Reduces emissions
from inefficient
logistics and food
waste

Scales green tech
production; Al-driven
process efficiencies
Transparent emissions
tracking in maritime
logistics

Optimizes resource use
and energy efficiency
Real-time fuel and
maintenance tracking;
reduces transport
emissions

Immutable product
traceability; supports
lower-emission
sourcing and logistics
Al-based dynamic
energy management
reduces carbon
footprint

Permanent COz
removal; blockchain
planned for credit
verification

Scalable CO: capture
and secure
underground storage
Reduces lifecycle
emissions of
construction by
locking in CO2
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implementation in mitigating climate change. At the current state, most
global and regional regulatory frameworks are still evolving to keep
pace with the rapid advancement of these technologies. Several real-
world issues must be acknowledge before proposing forward-looking
solutions.

8.1. Current policy gaps and real-world challenges

Despite growing interest in digital solutions for climate action, many
countries lack dedicated policies addressing the integration of IoT, Al,
and blockchain into carbon management. For example, regulations
surrounding IoT deployment often fail to specify standards for secure
environmental data transmission or long-term storage, leading to
inconsistent implementation across projects. Moreover, Al applications
in carbon optimization and monitoring frequently operate in regulatory
grey zones, with limited guidance on ethical use, bias mitigation, or
algorithmic accountability.

In the blockchain space, the absence of standardized protocols for
digital carbon credits and emission tracking results in fragmented efforts
that hinder trust and scalability. Different jurisdictions apply varying
degrees of oversight, and many lack legal recognition for blockchain-
based records. Furthermore, existing carbon markets are often criti-
cized for their lack of transparency, weak verification mechanisms, and
susceptibility to greenwashing or fraud.

There is also a lack of interoperability between national and inter-
national systems, which complicates data sharing and the harmoniza-
tion of standards. Without cohesive policies, even the most advanced
technologies risk being underutilized or misapplied in carbon seques-
tration projects.

8.2. Establishing clear standards for data privacy and security

The deployment of IoT technologies for real-time data acquisition in
carbon sequestration necessitates robust measures to safeguard data
privacy and security. Regulatory bodies must collaborate with technol-
ogy stakeholders to establish clear standards and guidelines. These
standards should encompass data encryption, access control, and secure
transmission protocols. Additionally, mechanisms for informed consent
and transparent data handling practices should be integrated to ensure
compliance with privacy regulations (Shayesteh et al., 2020).

8.3. Addressing ethical implications of Al in carbon sequestration

The utilization of Al-driven optimization and prediction models
raises ethical considerations, particularly concerning decision-making
processes. Regulatory frameworks should encourage transparency and
accountability in Al algorithms, ensuring they prioritize environmental
and societal well-being. Additionally, mechanisms for addressing bias,
fairness, and accountability in AI applications should be established to
foster trust and ethical deployment (Roberts et al., 2022). The main
pillars to reach the accepted robustness, lawfulness, and ethics in AI are
presented in pTable 3.

Table 3
The main pillars and requirements to reach trustworthy Al for carbon
sequestration projects inspired by Cannarsa (2021).

Pillar Description

Human agency and oversight

Technical robustness and safety

Privacy and data governance
Transparency

Diversity, non-discrimination, and fairness
Societal and environmental well-being
Accountability

NO U wN =
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8.4. Blockchain and Transparent Carbon Accounting: Regulatory
Oversight

The implementation of blockchain for transparent carbon accounting
requires a regulatory framework that ensures integrity and accuracy in
emissions reporting. Smart contracts and consensus mechanisms should
align with established emissions protocols. Regulatory bodies should
work in tandem with industry experts to develop and enforce standards
for blockchain-enabled carbon accounting, reducing the potential for
fraud or inaccuracies (Schletz et al., 2020)

8.5. Incentivizing technology adoption through carbon markets

To encourage the widespread adoption of IoT, Al, and blockchain
technologies in carbon sequestration, regulatory bodies should explore
mechanisms such as carbon markets. These markets can provide finan-
cial incentives for organizations and projects that implement innovative
technologies for carbon reduction. Establishing clear guidelines for
participation and accreditation within carbon markets will be essential
in driving technological advancements. However, it’s important to
acknowledge that the effectiveness of carbon markets can vary based on
regional and industry-specific factors, and ongoing monitoring and
adjustment of policies will be crucial (Qi et al., 2021).

8.6. International collaboration and harmonization of standards

Given the global nature of climate change, international collabora-
tion is paramount in establishing cohesive regulatory frameworks.
Regulatory bodies should engage in dialogue to harmonize standards
and guidelines for the integration of IoT, Al, and blockchain technolo-
gies in carbon sequestration efforts. This collaborative approach will
ensure consistency and effectiveness across regional and international
initiatives. However, it’s important to note that achieving consensus on
global standards may require diplomatic negotiations and ongoing co-
ordination among participating nations (Agreement, 2015).

Incorporating these policy and regulatory considerations will be
instrumental in creating an enabling environment for the successful
integration of IoT, Al, and blockchain technologies in carbon seques-
tration efforts. By addressing privacy, ethics, accountability, and inter-
national collaboration, regulatory frameworks can play a pivotal role

9. Addressing ethical and privacy concerns

As embarked on this technological frontier to revolutionize carbon
sequestration through the integration of IoT, Al, and blockchain, it is
essential to navigate potential ethical and privacy considerations. These
cutting-edge technologies, while promising, bring forth a range of con-
cerns that must be thoughtfully addressed to ensure responsible and
equitable implementation.

9.1. Ensuring fairness and equity in Al-driven solutions

The application of Al in carbon sequestration introduces questions of
fairness and equity. It is imperative to scrutinize algorithms for biases
that may inadvertently disadvantage certain communities or regions.
Striving for transparency in algorithmic decision-making and actively
seeking to mitigate biases is crucial in ensuring that the benefits of
technological advancement are distributed equitably (Hagendorff,
2022).

9.2. Balancing innovation with data privacy

The extensive data collection inherent in IoT networks for real-time
monitoring raises important privacy considerations. It is essential to
establish clear protocols for data handling, storage, and access. Ano-
nymization techniques and strict access controls should be employed to
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safeguard individual privacy rights. Additionally, providing individuals
with informed consent regarding data collection practices is paramount
(Van den Hoven et al., 2012).

9.3. Transparency and accountability in blockchain-based carbon
accounting

While blockchain offers unprecedented transparency in carbon ac-
counting, it also raises questions about data integrity and accountability.
Smart contracts and consensus mechanisms should be designed with
transparency and auditability in mind. Furthermore, mechanisms for
dispute resolution and error correction should be in place to address
potential inaccuracies in recorded data (Kshetri, 2017).

9.4. Engaging stakeholders and communities

Ethical considerations extend beyond technology itself to encompass
the broader engagement of stakeholders and affected communities. In-
clusive decision-making processes and community consultations should
be prioritized. Ensuring that the deployment of these technologies aligns
with local values and addresses community needs is fundamental to
ethical implementation (Gupta, 2014).

Addressing these ethical and privacy concerns is pivotal in building
public trust and ensuring the responsible deployment of IoT, Al, and
blockchain technologies in carbon sequestration. By prioritizing fair-
ness, transparency, and community engagement, a path towards tech-
nological solutions can be forged that not only combats climate change
but also does so with integrity and respect for all stakeholders involved.

10. Future directions, challenges, and research priorities

The integration of IoT, Al, and blockchain presents a dynamic
landscape with numerous opportunities for innovation. This section
identifies key areas for further exploration and discusses potential ad-
vancements on the horizon.

10.1. Enhancing machine learning algorithms for predictive modelling

While AI has shown immense promise in optimizing carbon capture
and storage, there is room for refinement. Future research should focus
on enhancing machine learning algorithms to improve the accuracy and
adaptability of predictive models. This includes incorporating more
comprehensive datasets and exploring advanced modelling techniques
such as deep learning (Liel et al., 2016).

10.2. Exploring decentralized ledger technologies for enhanced
transparency

The potential of blockchain in transparent carbon accounting is
immense, but there is ongoing research into even more efficient and
scalable decentralized ledger technologies. Future studies may include
the development of novel consensus mechanisms and smart contract
platforms to further enhance transparency and accountability in carbon
sequestration efforts (Chen et al., 2018).

10.3. Integrating sensor networks for comprehensive environmental
monitoring

The IoT ecosystem can be expanded to incorporate a wider array of
sensors for holistic environmental monitoring. Future research should
explore the integration of diverse sensor technologies to capture a
broader spectrum of environmental data, allowing for more nuanced
and accurate assessments of carbon sequestration projects (Li et al.,
2019).
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10.4. Evaluating the ecological impact of carbon sequestration efforts

While the focus has primarily been on carbon capture and storage, it
is crucial to assess the broader ecological implications. Future research
should delve into comprehensive environmental impact assessments to
understand how carbon sequestration initiatives influence ecosystems,
biodiversity, and other vital ecological factors (Pan et al., 2019).

These future directions and research priorities represent a roadmap
for the continued advancement of the integration of IoT, Al, and
blockchain in carbon sequestration efforts. By pushing the boundaries of
technology and knowledge, a more sustainable and resilient future will
be made in the fight against climate change.

10.5. Challenges and limitations of emerging technologies in carbon
sequestration

While the integration of IoT, AI, and blockchain offers trans-
formative potential for carbon sequestration, it is crucial to acknowledge
the associated challenges and limitations that may hinder their effec-
tiveness and scalability. One significant issue lies in the technological
infrastructure and accessibility, particularly in developing regions.
Many carbon sequestration projects are located in remote or rural areas
where stable internet connectivity, sensor deployment infrastructure,
and access to cloud computing resources remain inadequate, limiting
the practical implementation of these technologies.

Data privacy and cybersecurity pose another critical challenge. IoT
systems collect vast amounts of environmental and operational data,
often in real time. Without robust safeguards, this data may be vulner-
able to breaches or misuse. Similarly, AI algorithms can be opaque or
biased, especially when trained on limited or non-representative data-
sets. This can lead to skewed results or decisions that fail to reflect on-
the-ground realities, especially in complex ecosystems or diverse
communities.

In the case of blockchain, scalability and energy consumption are
persistent concerns. Although blockchain enables transparent and
immutable records, many consensus mechanisms (e.g., Proof of Work)
consume significant energy, potentially offsetting some of the carbon
reduction goals. Additionally, regulatory uncertainties and interopera-
bility issues between different blockchain platforms create barriers for
wide-scale adoption and integration with existing systems.

There are also economic and social implications. The upfront costs of
deploying IoT sensors, training Al models, or developing blockchain
infrastructure can be prohibitive for small-scale projects or communities
with limited funding.

Lastly, there is a governance and accountability gap. Clear roles,
responsibilities, and oversight mechanisms are still emerging for how
these technologies should be deployed and who should own or control
the resulting data and systems. Without inclusive and transparent
governance models, the deployment of these technologies could exac-
erbate existing inequalities or fail to gain public trust.

11. Conclusion

The integration of IoT, Al, and blockchain technologies represents a
ground-breaking advancement in the pursuit of efficient carbon
sequestration. This comprehensive review has illuminated the remark-
able synergies that arise when these cutting-edge technologies converge
to combat climate change.

Through the expansive networks of IoT, real-time data acquisition
has emerged as a linchpin, providing a dynamic feedback loop that
empowers precise and timely assessment of carbon sequestration pro-
jects. Meanwhile, Al-driven optimization and prediction models have
demonstrated their transformative potential in revolutionizing the effi-
ciency of carbon capture and storage. These machine learning algo-
rithms hold the key to unlocking even more accurate and adaptable
strategies in the future.



H. Pourrahmani et al.

The advent of blockchain technology has ushered in a new era of
transparency and accountability in carbon accounting. Its immutable
ledger ensures an unassailable record of sequestration efforts, mitigating
the potential for fraud or inaccuracies. This technological triumph is
poised to reshape the landscape of carbon management, setting a new
standard for integrity in environmental stewardship.

As we navigate this transformative terrain, ethical and privacy con-
siderations remain paramount. Striking a balance between technological
innovation and safeguarding individual rights stands as a critical facet of
this evolving landscape. Clear regulatory frameworks and ethical
guidelines must accompany technological advancement to ensure
responsible deployment.

Looking ahead, the evolution of machine learning algorithms,
decentralized ledger technologies, sensor integration, and ecological
impact assessments promises to amplify the efficacy of carbon seques-
tration efforts. The integration of diverse sensor technologies holds the
potential to provide even more nuanced and accurate assessments of
environmental parameters. Additionally, a more comprehensive un-
derstanding of the ecological impact of carbon sequestration initiatives
will be vital in crafting holistic and sustainable strategies.

In conclusion, this review article not only serves as a comprehensive
resource for researchers and practitioners but also sounds a clarion call
for continued research and development in this critical field. By
embracing innovation, collaboration, and ethical considerations, we are
poised to unlock the full potential of these technologies, propelling us
toward a more sustainable and resilient future in the fight against
climate change. The time for action is now, and the integration of IoT,
Al and blockchain stands as a beacon of hope in our collective efforts to
combat one of the greatest challenges of our time.
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Abstract Across the globe, governments are devel-
oping policies and strategies to reduce carbon emis-
sions to address climate change. Monitoring the impact
of governments’ carbon reduction policies can signif-
icantly enhance our ability to combat climate change
and meet emissions reduction targets. One promising
area in this regard is the role of artificial intelligence
(AI) in carbon reduction policy and strategy monitor-
ing. While researchers have explored applications of
Al on data from various sources, including sensors,
satellites, and social media, to identify areas for car-
bon emissions reduction, Al applications in tracking
the effect of governments’ carbon reduction plans have
been limited. This study presents an Al framework
based on long short-term memory (LSTM) and statis-
tical process control (SPC) for the monitoring of varia-
tions in carbon emissions, using UK annual CO2 emis-
sion (per capita) data, covering a period between 1750
and 2021. This paper used LSTM to develop a surro-
gate model for the UK’s carbon emissions characteris-
tics and behaviours. As observed in our experiments,
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LSTM has better predictive abilities than ARIMA,
Exponential Smoothing and feedforward artificial neu-
ral networks (ANN) in predicting CO2 emissions on
a yearly prediction horizon. Using the deviation of
the recorded emission data from the surrogate process,
the variations and trends in these behaviours are then
analysed using SPC, specifically Shewhart individ-
ual/moving range control charts. The result shows sev-
eral assignable variations between the mid-1990s and
2021, which correlate with some notable UK govern-
ment commitments to lower carbon emissions within
this period. The framework presented in this paper can
help identify periods of significant deviations from a
country’s normal CO2 emissions, which can potentially
result from the government’s carbon reduction policies
or activities that can alter the amount of CO2 emissions.

Keywords Carbon emissions - LSTM - Statistical
process control - Artificial intelligence - Climate
change - Energy policy - Deep learning - ARIMA -
Exponential smoothing - ANN

Introduction

Climate change is one of the most pressing global envi-
ronmental issues, with carbon emissions contributing
significantly. Due to the urgency of this issue, gov-
ernments across the world have developed and imple-
mented various policies and plans to reduce carbon
emissions. Examples of these efforts include the Paris
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Agreement (Dimitrov, 2016), the US Environmental
Protection Agency’s Clean Power Plan (U.S. Environ-
mental Protection Agency, 2016) and the UK’s Sixth
Carbon Budget (Committee on Climate Change, nd).
Crucial aspects of these policies include incentivis-
ing renewable energy sources, promoting energy effi-
ciency, and implementing carbon pricing mechanisms.
Even though these carbon reduction policies can help
to reduce future carbon emissions, monitoring their
impact is essential but daunting.

Carbon emissions are the product of diverse oper-
ations, including manufacturing, transportation, and
agriculture. As such, monitoring all of these emissions
requires a vast amount of data aggregated from mul-
tiple sources. In addition to the difficulty in obtain-
ing these data due to a lack of transparency in the
industrial reportage of emissions data (Deane et al.,
2017), the monitoring process is complex and requires
advanced computations. Technologies such as deep
learning (LeCun et al., 2015) and statistical pro-
cess control (SPC) (Oakland & Oakland, 2018) have
evolved as effective computational techniques for data
analysis and process monitoring, with applications in
several sectors, including manufacturing, healthcare,
and finance. This study explores the applications of
these technologies in environmental monitoring, con-
sidering the impact of governments’ carbon reduction
initiatives, using UK annual CO2 emission (per capita)
data from 1750 to 2021 (Ritchie et al., 2020).

Recurrent Neural Networks (RNNs) are the most
popular deep learning architecture for time series anal-
ysis because they can model sequential data, using
the output of past time steps as inputs to the cur-
rent time step (Medsker & Jain, 2001). The feed-
back connections in RNN and its variants make them
suitable for processing audio, videos, and texts, with
applications in machine translation (Wu et al., 2016),
handwriting recognition (Graves et al., 2008), speech
recognition (Zia & Zahid, 2019), robot control (Mayer
et al., 2006), and time series analysis (Karim et al.,
2017; Siami-Namini et al., 2018a). Standard RNNs
struggle with modelling long-term dependencies due
to their susceptibility to the vanishing gradient prob-
lem. To solve the vanishing gradient issue in RNN,
Long Short-Term Memory (LSTM) has been intro-
duced (Hochreiter & Schmidhuber, 1997). LSTMs
learn long-dependencies by incorporating a memory
cell that selectively retains or forgets information from
previous time steps. In contrast to traditional time series

@ Springer

models, like autoregressive integrated moving aver-
age (ARIMA) model (Shumway et al., 2017), which
often require strong pre-existing assumptions about the
underlying data distribution and relationships between
variables, deep learning techniques such as LSTMs can
learn sequential representations without the need for
such suppositions, making them effective in modelling
complex, non-linear relationships (Karim et al., 2017;
Siami-Namini et al., 2018b). Moreover, unlike tradi-
tional time series models, which often use seasonal
dummies to capture the effect of seasonality, includ-
ing annual seasonality, ANN, such as LSTM models,
do not typically use dummies for seasonal effects, as
they can capture seasonal patterns implicitly (Heshma-
tol Vaezin et al., 2022; Zhang & Qi, 2005).

In this study, we first compared the performances of
LSTM, ARIMA, Exponential Smoothing (Ostertagova
& Ostertag, 2011) and feedforward ANN (Sazli, 2006)
in predicting CO2 emissions on a yearly prediction
horizon. Due to its superior performance compared
to other models, LSTM was selected for develop-
ing a surrogate model of the UK’s carbon emissions
characteristics and behaviours based on the experi-
ment’s outcomes. Using SPC, specifically the Shewhart
individual-moving range (I-MR) control chart, we eval-
uate the variations and trends in these behaviours using
the deviations of the recorded emission data from the
surrogate process. SPC is a statistical technique that
can provide insight into the variability within a process.
With SPC techniques, it is possible to spot and interpret
anomalies or unusual changes in the emissions data.
The combination of deep learning and SPC, which has
successfully been used in analysing SCADA data asso-
ciated with wind turbines (Udo & Muhammad, 2021),
can provide an effective tool for monitoring the impact
of the efforts by the UK government to reduce carbon
emissions.

The contributions of this paper can be summarised
as follows:

e Available research publications in this area demon-
strate that this paper is the first to apply a hybrid
technology, consisting of LSTM and SPC, to car-
bon emissions monitoring, using LSTM to model
the baseline behaviours of UK carbon emissions
(per capita) and SPC to detect assignable variations.

e This paper is also the first to discuss the control
chart obtained from applying computational and
statistical process techniques to C O, emission data
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in line with known UK government carbon reduc-
tion commitments.

These contributions are vital to monitoring the effec-
tiveness of the government’s carbon reduction policies,
which are crucial in combating climate change. By
continuously evaluating the outcomes, we can iden-
tify effective strategies and pinpoint areas that need
improvement to ensure that the policies align with the
government’s climate objectives towards a sustainable
and low-carbon future.

Review of related literature

Several researchers have successfully applied artifi-
cial intelligence and machine learning to forecast car-
bon emissions, supporting the development of effective
environmental policies for reducing carbon emissions.
Acheampong and Boatang used ANN in training mod-
els for forecasting the intensity of carbon emissions in
Australia, Brazil, China, India, and the USA with mini-
mal error (Acheampong & Boateng, 2019). Their study
selected nine crucial parameters contributing to carbon
emissions intensity as input variables, including eco-
nomic growth, energy consumption, R&D, financial
development, foreign direct investment, trade open-
ness, industrialisation, and urbanisation. The ANN
models were validated and can be used by international
organisations and environmental policymakers to fore-
cast and make climate change policy decisions.

Agbulut proposed a framework relying on three
machine learning algorithms — deep learning, support
vector machine(SVM), and ANN — to forecast energy
consumption and CO2 emissions relating to Turkey’s
transportation sector (Agbulut, 2022). The study used
gross domestic product per capita, population, vehicle
kilometres, and year as inputs. It concluded that policy-
makers need future energy investments to establish reg-
ulations, policies, norms, restrictions, legislations, and
initiatives to mitigate energy consumption and emis-
sions from the transportation sector.

Dozic and Urosevic (2019) examined an ANN
model of the EU’s energy system, which predicts CO2
emissions until 2050, considering the current Energy
Policy of the EU (Dozic & Urosevic, 2019). The study
concluded that the model is highly effective in predict-
ing the behaviour of CO2 emissions. It can facilitate
timely corrections to energy and economic strategies by

adjusting relevant indicators to meet the ambitious CO2
emission reduction targets set by the Energy Roadmap
2050 document of the European Commission. Their
research analysed several ANN structures to identify
the most effective model for large energy systems.

Huang (2021) contributed to China’s national pol-
icy plan for achieving a carbon peak in the mid-to-
long term, focusing on the Yangtze River Economic
Belt basin (Huang et al., 2021). The author’s goal was
to comprehensively promote energy conservation and
reduce emissions using a hybrid model of LSTM and
support vector regression (SVR) to manage and fore-
cast carbon emissions. The model in their research
uses information indicators such as industry invest-
ment, labour efficiency output, and carbon emission
intensity to predict carbon emissions accurately. Other
researchers have employed schemes based on SPC to
monitor and recommend reducing carbon emissions.

Shamsuzzaman et al. (2021) developed a technique
for monitoring carbon emissions from the industrial
sector using SPC (Shamsuzzaman et al., 2021). The
authors introduced an economic-statistical design for
the combined Shewhart X and exponentially weighted
moving average (EWMA) scheme, which can help to
monitor carbon emissions for prompt action to control
excessive emissions. The proposed Statistical Process
Monitoring (SPM) scheme parameters have been opti-
mised to minimise the total cost, including carbon emis-
sions and operational costs. Actual data from differ-
ent industrial facilities have been used to demonstrate
the application of the proposed SPM scheme and its
effectiveness in reducing costs associated with exces-
sive carbon emissions from industries.

Although the above papers demonstrate excellent
applications of Al or SPC in carbon emission monitor-
ing or control, their results suffer limitations associated
with these techniques. For example, while ANNs can
learn complex non-linear patterns and relationships in
time series data, unlike SPC, they cannot effectively
monitor and control a process to ensure it operates
within specified limits. ANNs are better suited for pre-
dictive modelling and forecasting, while SPC is bet-
ter for monitoring and control. This paper proposes a
hybrid technique consisting of LSTM and SPC. LSTM
can be used to model carbon emission characteristics
from historical carbon emission data. At the same time,
SPC can identify whether this process entails a natural
or a caused variation.
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Methodology
Data description

The data used for this research is the UK annual CO2
emission (per capita) data, covering between 1750 and
2021 (Ritchie et al., 2020). Figure 2a presents the raw
data. The records are based on production or territo-
rial emissions from burning fossil fuels or cement pro-
duction within the UK’s borders and do not include
emissions from traded goods. Moreover, the numbers
are specific to CO2 emissions, not total greenhouse gas
emissions. Table 1 presents the descriptive statistics of
the dataset. As can be seen, the data is continuous, neg-
atively skewed, and platykurtic.

The workflow

Figure 1 presents the workflow involving the tech-
niques developed for this research.

Data pre-processing

This phase involves outlier removal, filtering, and nor-
malisation. This paper applies isolation forest (Liu et
al., 2008) for outlier detection and removal. Isolation
forest can detect outliers by scoring how easy it is to
isolate a single data point from the rest of the data points
using a binary search tree. The higher the number of
splits required to isolate a data point, the less likely the
data point is identified as an outlier.

Filtering, specifically moving averages, follows the
outlier removal process to further remove noise from
the data and to replace missing values with the mean
of their five nearest neighbours. This step is relevant

Table 1 Descriptive statistics

Statistic Value
Count 227.000000
Mean 7.471925
Standard deviation 3.213397
Minimum 1.006713
Kurtosis —1.139382
Skewness —0.626540
Median 8.912930
Maximum 11.818837
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in filtering out false signals, which can obscure the
underlying trend in the data and consequently affect the
computation of the control limits. The data undergoes
z-score normalisation, scaling it down to the interval
[0,1] to ensure that the models have consistent scale
and distribution, contributing to the efficiency of the
learning algorithm.

Model development

The initial phase of the study involves evaluating the
predictive accuracy of four distinct models on the UK
annual CO2 emissions: LSTM, ARIMA, Exponential
Smoothing, and Feedforward ANN. The accuracy of
the surrogate model is essential for minimising the
potential interference of the model inaccuracy with the
CO2 emissions monitoring process. The dataset is par-
titioned into 80% training and 20% testing subsets for
the analysis. The training data encompasses annual car-
bon emissions per capita between 1803 and 1976, while
the test data spans from 1977 to 2021.

Among these models, LSTM, ANN, and ARIMA
leverage data from the previous three years to pre-
dict CO2 emissions for each year, whereas Exponential
Smoothing relies on immediate past values for predic-
tion. As a first step towards developing a framework
for accurately identifying variations in CO2 emissions
within the UK, the goal of the model development pro-
cess is to effectively represent the typical pattern in the
UK’s annual carbon emission data. By utilising SPC,
this model can then be used to detect out-of-control
situations.

To achieve this aim, the predicted value is subse-
quently compared with the actual value for the corre-
sponding timestamp, allowing for monitoring changes
in CO2 emissions. For example, when predicting the
CO2 emissions for 1977, the actual emissions data
from 1974 to 1976 is used as input. The disparity
between the predicted and actual values is calculated
and can be leveraged to monitor fluctuations in CO2
emissions, and this process continues throughout. This
approach aligns with the research goal, which is not
long-term forecasting of UK CO2 emissions but track-
ing assignable variations within the emission data.

Hyperparameters for the LSTM, ARIMA, Exponen-
tial Smoothing, and ANN were selected using Bayesian
Optimisation (Frazier, 2018) available in hyperopt
library (Bergstra et al., 2013). Table 2 presents the
hyperparameters for models.
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Fig. 1 Research workflow

Monitoring the carbon emissions process

The actual monitoring of the carbon emissions process
follows the successful model development. Using the
data from 1977 to 2021, set aside for model testing
and process monitoring, the surrogate model predicts
each year’s carbon emission per capita. The absolute
deviation of the measured emission from the predicted
emission for the year k is calculated as follows: §y =
|predicted, — measuredy|

Although SPC approaches have been developed for
non-normal data, researchers have demonstrated that
serious errors can occur in results from non-normal
data (Andrédssyové et al., 2012; Chou et al., 1998; Xiao
et al., 2020). To avoid poor results due to non-normal
data, the Shapiro-Wilk test of normality is first used
to identify if the deviations are normally distributed
or not (Shapiro & Wilk, 1965). The null hypothesis of
the Shapiro-Wilk test is that the sample comes from
a normally distributed population. The test statistic is
calculated as follows:

W= Oy aisi)?

- 1
S i~ o) o

where n is the sample size, §(i) is the i — th order
statistic (i.e., the ith smallest value in the sample), X is
the sample mean, and a; are constants that depend on
n and the chosen level of significance. The constants
are chosen so that the expected value of W is approx-
imately equal to 1 for normal data. The Shapiro-Wilk
test compares the value of W to critical values obtained
from a Shapiro-Wilk critical values table. If the calcu-
lated value of W is less than the critical value, then the
null hypothesis is not rejected, and the sample is con-
sidered consistent with normality; otherwise, the null
hypothesis is rejected, and the sample is considered to
be non-normal.

To avoid challenges posed by non-normal data, the
deviations undergo Box-Cox transformation (Box &
Cox, 1964) before the SPC process if they are non-
normally distributed. The Box-Cox equation is given by

)

* _ —ykk_l if L #0
In(y) ifA =0

y® is the transformed variable; y represents the origi-
nal variable; and X is the transformation parameter. The
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Table 2 Hyperparameters

Model Hyperparameter Value
LST™M LSTM_1 units 128
Activation_1 Relu
LSTM_2 units 64
Activation_2 Relu
Dropout 0.2
Optimizer Adam
Learning rate 0.00001
Loss function Mean squared error
Epochs 250000
Batch size 8
Validation split 0.2
ARIMA Autoregressive order 3
(9]
Differencing order 4
(@
Moving Average 9
order (q)
Exponential Damping factor 0.875
Smoothing
ANN Learning rate 0.2071
Number of hidden 4
neurons
Momentum term 0.0797
Maximum iteration 830
Activation Relu

value of A can be any real number but is often bounded
within a range of values depending on the context and
the nature of the data. For example, A must be positive
if y is strictly positive. A is selected to maximize the
log-likelihood function to find the best transformation
for the data.

Next, SPC can help to investigate regions along a
time series to determine if natural or special variations
drive them. Natural variations are inherent to a pro-
cess and are caused by random factors, while special
variations are non-random and driven by specific fac-
tors, such as a government’s carbon reduction policy,
as in the case of this research. To investigate the devi-
ations between the recorded carbon emissions and the
value predicted using the surrogate model and to iden-
tify the nature of the cause of the deviation for each
specific period, we have employed SPC. Specifically,
the Shewart control chart (the individual/moving-range
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(I-MR) chart) has been used to evaluate the devia-
tions over time. [-MR-chart combines the moving range
(MR) and the individual control charts in determin-
ing the out-of-control situations within a process. Each
chart is based on two control limits, the Upper Con-
trol Limit (UCL) and Lower Control Limit (LCL), to
assess the variations within the data. The control limits
establish the chart’s sensitivity to variations within the
data points. MR of the deviation distribution, {;}7" |, is
estimated as the absolute difference between the i —th
deviation and its predecessor, the (i — 1)¢h.

The process of computing the control limits for MR
is as follows:

e The difference between a data point §; and its pre-
decessor §;_1 is given by

MR = |5; — di—1l ©)

e The centre line is computed as the arithmetic mean
of the values obtained from step 1 above as follows:

m—1
— ; MR;
R = izt MRi 4)
m—1
e Calculate control limits
UCL = Dy %« MR (%)
LCL = D3+ MR (6)

e Using these values, plot the control chart and pro-
vide interpretations.

For the individual chart, the control limits are com-
puted as follows:

e Centre line

Diet i

X = @)
m
e Control limits
_  _MR
UCL=x+4+3— ®)
dr
_ MR
LCL =% —3— )]
dy

where d», D3, and D4 are anti-biasing constants, with
values as 1.128, 0, and 3.267, respectively, being the
recommended factors for sample size, n = 2 (Mont-
gomery, 2020).



Environ Monit Assess (2024) 196:231

Page 7of 15 231

Results and discussions
Data cleaning and transformation

Figure 2a and b demonstrate the improvements achieved
in the data after passing it through the pre-processing
pipeline. The data points before 1800 were considered
outliers and were deleted from the dataset. As well as
smoothing out and removing noise from the dataset, the
moving average is also used to replace missing values.
The data is then normalised to the scale [0,1] to ensure
that the models have consistent scale and distribution.

Evaluation of the surrogate model

Figure3 presents the performance of the models on
the data. The first part of the figure showcases how
well the models perform on the training subset, while
the second part depicts their ability to predict the next
CO2 emissions using values from the past three years.
Metrics such as mean square error (MSE), root mean
square error (RMSE), mean absolute error (MAE), and
R-squared are used to evaluate the models and are sum-
marised in Table 3. The results show that the LSTM out-
performs the other models while the ARIMA performs
the worst. Due to its superior performance, the LSTM is
selected as the surrogate model for representing the UK
carbon emissions during the process monitoring phase.
The accuracy of the surrogate model is paramount in
reducing the potential interference of model inaccuracy
with the CO2 emissions monitoring process.

10

UK annual CO: emlssions (per capita)
o

1500 1950 2000

Year

1750 1300 1850

(a) Raw data

Normahsed Uk annual CO» emissions (per capita)|
(=]
o

Process monitoring using SPC

The absolute difference (or deviation) between the
actual UK annual carbon emissions (per capita) and the
predicted emissions is first calculated across the time
series for the monitoring process. The Shapiro-Wilk
normality test demonstrates that the data significantly
deviates from a normal distribution with p-value (=
7.997 x 10~13) < 0.05. Applying the Box-Cox trans-
formation to the deviation data significantly produced a
normally distributed output, with the significance value
of the Shapiro-Wilk test, p-value(= 0.596 > 0.05).
Figure 4 demonstrates the data distributions before and
after applying the Box-Cox transformation.

Figure 5 presents I-MR control charts obtained from
the absolute difference between the model predictions
and the recorded UK carbon emissions. Following Nel-
son’s rules for control chart interpretations (Nelson,
1984, 1985), the data points presented in red have been
identified as “out-of-control” situations (or assignable
causes or special cause variations). Unlike the com-
mon cause variations (i.e., data points in blue), which
are the natural variations within a system, assignable
causes are unexpected. They are often due to exter-
nal reasons. SPC aims to eliminate assignable vari-
ations in several processes, including manufacturing,
production, asset management, and service delivery,
because they imply a deviation from predictable or
known behaviours. However, for a process that seeks to
introduce a departure from existing practice, assignable
causes could be desirable because they can represent

—
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Fig. 2 UK annual CO2 emission (per capita) data
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Fig.3 Models’ performance

the effect of the actions introduced to cause the change.
An example of the situation above where assignable
causes can portray a positive change is the effect of a
government’s carbon reduction plan on carbon emis-
sions, which is the thesis of this paper. Below are the
descriptions of Nelson’s eight rules and their general
practical insights:

e Rule 1: One point is over three standard deviations
from the mean — an unusual event or a measure-
ment error.

e Rule 2: Nine (or more) points in a row are on the
same side of the mean — a slight shift from the
average.

e Rule 3: Six (or more) points in a row continually
increase (or decrease) — a trend pattern.

Table 3 Performance scores of the model

Metric LSTM ARIMA Exponential ANN
smoothing

MSE 0.00044 0.2643 0.0249 0.0737

RMSE 0.020 0.211 0.158 0.272

MAE 0.016 0.403 0.125 0.190

R? 0.997 0.971 0.997 0.993
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e Rule4: Fourteen (or more) points alternate in direc-
tion, increasing then decreasing — an over-control
pattern.

e Rule 5: Two (or more) out of three points in a row
are more than two standard deviations from the
mean in the same direction — a significant shift
from the average.

e Rule 6: Four (or more) out of five points in arow are
more than one standard deviation from the mean in
the same direction — a slight shift from the average.

e Rule 7: Fifteen points in a row are all within one
standard deviation of the mean on either side of the
mean — stratification nature of the process.

e Rule 8: Eight points in a row exist, but none within
one standard deviation of the mean, and the points
are in both directions from the mean — a mixture
property of the process.

The numbers on the red data points in Fig.5 indi-
cate the rules used to confirm the points as out-of-
control. In the individual (I) and the moving range
(MR) charts, only rules 1, 2, 5 and 6 have been vio-
lated. Combining I-chart and MR-chart provides a
clear picture of the process behaviours using these
rules. I-charts can identify any common or assignable
causes within a process by monitoring the mean and
shifts in the process. In contrast, MR charts monitor
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Fig. 4 Box-Cox transformation of the deviation data

the process variations by tracking the absolute differ-
ence between known and measured behaviours of the
system. Out-of-control situations due to the violation

After Box-Cox transformation

(b) The deviation data after Box-

Cox transformation

of rule 1 have been highlighted on the I-chart (in
1982,1983,1995,2006,2008, and 2017-2021) and the
MR-chart (in 1984 and 2009). Violation of rule 1 can
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Fig. 5 I-MR Charts of the absolute deviation between the actual and predicted carbon emissions values
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be interpreted as the occurrence of an unusual event or
an erroneous measurement of data. Deviations from the
then-existing pattern in the UK carbon emissions (per
capita) have been recorded between 1997-2004 and
2012-2016 and 2000, as highlighted by the data points
numbered 2, 5, and 6 in the I-chart, illustrating vio-
lations of the corresponding rules. The control charts
reveal that activities that impacted the UK’s carbon
emissions per capita intensified from the mid-1990s
to 2021.

In line with the observations from the control charts,
according to a technical report from the European Envi-
ronment Agency, between 1990 and 2012, greenhouse
gas emissions in the EU decreased, with Germany and
the UK accounting for 50% of the EU’s net decrease
in emissions within this period (Agency & Agency,
2015). The UK’s main contributor was the liberalisa-
tion of energy markets and the subsequent switch from
oil and coal to gas as a fuel for electricity production
(Agency & Agency, 2015).

Moreover, the intensification of the UK’s commit-
ments towards carbon reduction from the 1990s follows
its choice of 1990 as a baseline year for carbon emis-
sions reductions. This baseline commitment choice
was primarily due to the United Nations Framework
Convention on Climate Change (UNFCCC), estab-
lished in 1992 but became effective in 1994 (Bodan-
sky, 1993; Greene, 2000). The convention aimed to sta-
bilise greenhouse gas concentrations in the atmosphere
at a level that would prevent dangerous anthropogenic
interference with the climate system. The developed
nations agreed to execute national strategies for tack-
ling climate change to lower anthropogenic greenhouse
gas emissions to levels observed in a baseline year.

By setting the baseline year at 1990, the UK com-
mitted to reducing its emissions to levels below that
year’s emissions (Barrettet al., 2018; Kelly etal., 2014)
through several schemes, including the Paris Agree-
ment and the Kyoto Protocol, involving the first and
second commitments, covering the periods 2008-2012
and 2013-2020 respectively. Since then, the UK has set
several emissions reduction targets, including achiev-
ing net zero emissions by 2050 (Pye et al., 2017). Using
1990 as a baseline year, the UK can track its progress
towards these targets and monitor its success in reduc-
ing its contribution to global greenhouse gas emissions.

We suspect the natural variation recorded between
2009 and 2013 is part of the response to the measures
preceding this period, including the first Kyoto Proto-
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col commitment, which could normalise as part of the
baseline. However, the Second Kyoto Protocol commit-
ment and several other efforts introduced a shift from
the baseline in 2013, leading to caused variation, as
seen on the control chart.

Correlating the UK government’s known carbon reduc-
tion/energy policies and emissions-related events with
the out-of-control periods

The control chart’s out-of-control periods (i.e., the
shaded region) show correlations with the most signif-
icant UK carbon reduction and energy efficiency com-
mitments and plans and events relating to carbon emis-
sions over the years. To demonstrate that the approach
in this paper can identify where carbon-related policies
and events within the UK may impact its usual carbon
emission process, we have identified carbon-related
policies and events recorded within the shaded peri-
ods. Significant carbon reduction policies and events
in the UK that correlate with the shaded regions in the
control chart have been presented as follows:

1982-1984

a While no carbon reduction policy or legislation was
directly established by the UK government within
this period, an earlier policy, such as the UK Energy
Conservation Act 1981 (Legislation.gov.uk, 1981),
could have affected the CO2 emissions within this
period. The Act required energy audits and effi-
ciency measures for public sector buildings and
large companies. Its goal was to reduce energy
consumption, improve energy efficiency, and pro-
mote sustainable development in the UK. Data pub-
lished by the UK National Infrastructure Commis-
sion shows that total inland coal consumption in the
UK decreased from 1981 to 1982 by 6.25%.!

b A major event within this period, which could
impact UK carbon emissions, was the UK miners’
strike (from March 84 to March 85) (Adeney &
Lloyd, 2021), which led to the closure of many coal
mines in the UK. This closure could decrease car-
bon emissions around this period since coal signifi-
cantly contributes to carbon emissions. Mamurekli
demonstrated that as well as the reduction in the

! https://nic.org.uk/app/uploads/Historical-Energy-Data-Final-

Dataset.xIsx
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UK’s coal supply between 1984 and 1985, the UK’s
coal consumption reduced from 34.6% of the total
energy consumption in 1978 to 25% in 1984-85
(Mamurekli, 2010).

1995-2009

a The liberalisation of the energy market in the UK
began in the late 1990s (Stanford, 1998) and paved
the way for competition in the generation and sup-
ply of electricity. The subsequent “dash for gas” in
the 1990s saw a significant increase in the use of
natural gas for power generation (Spooner, 1995).
This refers to a transition among newly privatised
electricity companies in the UK towards gener-
ating electricity using natural gas. The “dash for
gas” caused a decrease in gas prices, a substantial
increase in gas-fired power generation capacity, sig-
nificant improvements in the average efficiency of
gas-fired power plants, and a corresponding rise in
total gas-fired electricity generation from 4 TWh
in 1990 to 140 TWh in 2003 (Graus et al., 2007).
Richardson and Chanwai confirm that the “dash for
gas” contributed to reducing the UK’s carbon emis-
sions within this period (Richardson & Chanwai,
2003).

The UK government levies a fee on the energy used
by industry, farms, and the governmental sector.
This fee is known as the Climate Change Levy
(CCL) (Pearce, 2006). The programme was first
implemented in 2001 to promote energy efficiency
and lower greenhouse gas pollution, with plans to
cut annual emissions significantly by 2010. Since
then, it has incentivised businesses to reduce energy
consumption, increase the use of renewable energy,
and generate government revenue, but it has also
increased costs for businesses. Data is needed to
conclude how much this scheme contributed to the
variability in the UK’s carbon emissions at the out-
set before it became part of the baseline.

In 2005, the European Union created the EU Emis-
sions Trading System (EU ETS) as a cap-and-
trade programme to lower greenhouse gas emis-
sions from industrial areas (Action, 2013). It lim-
its the overall quantity of emissions that industries
can release and covers all EU members, includ-
ing the UK before it leaves the EU. Companies
included in the programme are given permits to
cover their emissions. They can purchase or trade

these allowances on the market to generate revenue,
providing an incentive to cut emissions. Similar to
the situation with the CCL, data is needed to con-
clude how much this scheme contributed to the vari-
ability in the UK’s carbon emissions at the outset
before it became part of the baseline.

Energy Performance Certificates (EPCs) were intro-
duced in the UK in 2007 (Watts et al., 2011), a sig-
nificant move towards increasing building energy
efficiency and lowering carbon pollution. EPCs
offer details on a building’s energy efficiency and
suggestions for development, assisting in spread-
ing knowledge about energy efficiency and encour-
aging homeowners and sellers to invest in energy-
saving technologies.

Following the Climate Change Act of 2008, the UK
government ratified the Kyoto Protocol and com-
mitted to reducing greenhouse gas pollution signif-
icantly by 2050 (Skiba et al., 2012). In response,
the UK has taken measures to support the use of
renewable energy, improve the energy economy,
and promote low-carbon transit to meet this goal.
For example, the UK has established legally bind-
ing carbon budgets, passed the Climate Change Act,
and committed to providing international climate
finance to support developing countries’ climate
action. These were targeted at reducing UK’s green-
house gas emissions by 12.5% below 1990 levels
by 2008-2012, a target it had exceeded in 2014
(of Energy & Change, 2015).

f A carbon budget, or cap on the amount of green-

house emissions the UK can release over five years,
was established by the Carbon Budgets Order 2009
(UK Government, 2023a) as a piece of UK law.
The UK government adopted policies and steps to
decrease emissions and provide regular updates on
its progress towards achieving these goals.

2013-2021

a To promote energy efficiency and lower green-

house gas pollution, the UK passed the Energy Act
2013 into legislation (UK Government, 2023b). It
consists of several measures, including the Car-
bon Price Floor, Electricity Market Reform, Green
Deal, Minimum Energy Efficiency Standards, and
Renewable Heat Incentives. These regulations seek
to advance the use of low-carbon technologies, fos-
ter the growth of green energy sources, and improve
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the energy economy of residential and commercial
buildings.

b The Carbon Reduction Commitment(CRC) Energy
Efficiency Scheme was a mandatory UK gov-
ernment initiative introduced in 2010 to improve
energy efficiency and reduce carbon emissions
(Committee on Climate Change, 2010; UK Depart-
ment of Energy and Climate Change, 2010). How-
ever, the CRC Energy Efficiency Scheme was
criticised for its complexity, which made com-
pliance challenging and expensive. The scheme
was reformed in 2013 to simplify the process,
focus on energy efficiency and introduce a perfor-
mance league table to encourage transparency and
improvements. It was later replaced by the Stream-
lined Energy and Carbon Reporting (SECR) frame-
work in 2019 (UK Government, 2021b).

¢ The UK government launched the Clean Growth
Strategy in 2017 to promote economic growth while
reducing greenhouse gas emissions and address-
ing climate change (Ward & Matikainen, 2018).
The strategy outlines various measures to achieve
this, including improving energy efficiency in
homes and businesses, encouraging the use of low-
emission vehicles and investing in infrastructure,
supporting the development of low-carbon indus-
tries, investing in research and development for new
low-carbon technologies, and incentivising busi-
nesses to reduce their carbon footprint.

d The UK government and the offshore wind indus-
try launched the offshore wind sector deal in 2019
to significantly increase offshore wind power gen-
eration (BEIS, 2019). Its goal is to increase the
UK’s offshore wind capacity by 2030 and expand
the number of jobs in the sector while contribut-
ing to efforts to combat climate change and reduce
greenhouse gas emissions. The deal includes strate-
gies such as investment in new offshore wind farms,
improvements to supply chains and infrastructure,
and support for innovation and research and devel-
opment.

e The UK government committed in 2019 to achieve
net zero carbon emissions by 2050, aiming to limit
global warming to 1.5°C above pre-industrial levels
and prevent the worst impacts of climate change
(UK Government, 2021a). This target is enshrined
in law, making the UK the first major economy in
the world to commit to net zero carbon emissions
by 2050. Strategies include increasing renewable
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energy generation, phasing out petrol and diesel
cars, improving energy efficiency in buildings, and
investing in new technologies.

f The COVID-19 pandemic significantly impacted
worldwide carbon emissions (Mehlig et al., 2021).
With lockdowns and travel restrictions, energy
demand was significantly decreased, particularly
from transportation and industry. As a result, car-
bon emissions in the UK fell to their lowest levels
in decades, with a 13% reduction compared to the
previous year.

g The UK government introduced the Sixth Carbon
Budget in December 2020, aiming to achieve the
country’s net zero emissions objective by 2050
by lowering greenhouse gas emissions by 78% by
2035 compared to 1990 (UK Government, 2021c¢).
The plan outlines sector-specific emissions reduc-
tion goals and methods for achieving them, includ-
ing growing renewable energy sources, enhancing
the energy economy, and utilising fewer fossil fuels
for transportation. The UK government accepted
the Committee on Climate Change’s proposals and
plans to propose legislation to formalise the goals.

Conclusions and recommendations

This research demonstrates the application of a hybrid
technology comprising deep learning and statistical
process control in monitoring the impact of the gov-
ernment’s carbon reduction policy on carbon emissions
within the UK economy. We first developed the surro-
gate model of the carbon emissions process of the UK
and computed the deviation of out-of-sample measured
data from the model. -MR was employed to identify
regions of special cause variations, which we demon-
strated to correlate with significant carbon reduction
policies of the UK government and known events, such
as COVID-19, that can impact UK carbon emissions.
However, there are still aspects of this work that war-
rant future research. For example, it can be challeng-
ing to identify each policy’s or event’s contributions to
an out-of-control region. Also, we cannot demonstrate
whether the responses on the control charts emanated
from the long-term or short-term effects of policies.
Solving these problems will make it possible to investi-
gate the impact of individual policies and how long they
take to reflect on the process. In our future related work,
we aim to explore explainable Al applications on this
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task, leveraging explicit dummies to understand better
the influence of policies of interest on carbon emis-
sions data. This paper considers the government’s car-
bon reduction policies and events such as COVID-19;
however, several other events can impact carbon emis-
sions. These activities include economic development,
technology, agriculture, and imports. Investigating the
impact of changes in the actions within these activities
will be a valuable further contribution to knowledge.
Although our method cannot recommend future cli-
mate policies, when used in combination with a qualita-
tive approach it can be helpful in identifying the impact
of existing policies and determining which ones to rein-
force for more effective CO2 emissions control.
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ARTICLE INFO ABSTRACT
Keywords: In this viewpoint article, our goal is to raise awareness and spark debate in the Information
Artificial intelligence Systems (IS) community regarding a prominent concern that has important strategic and ethical

GAI and Al strategizing

: implications: the environmental impact of the increasing use of generative artificial intelligence
Global warming

) (GAI). We examine several specific issues, beginning with GAI's heavy consumption of natural
Climate changes .. . . I
Ethics resources and electricity. We then move to assessing how the rich and the Global North gain via
Global South GAI, while the poor and the Global South must deal with its adverse effects. We then move to
Social justice assessing GAI's impact on underrepresented communities and countries in the Global South;

while GAI contributes to global warming, this affects people unevenly, because it is mostly rich
people and the Global North that make intensive use of these technologies. After suggesting that
more local and global laws are needed to regulate the sustainable use of Al, we report on how
organizations can perform Al strategizing, for instance to control emissions in smart cities and
improve weather forecasting. We conclude with a research agenda that aims to encourage IS
scholars to focus on the environmental impact of Al, its ethical implications for organizations, and
how GAI can be used strategically to benefit all.

Introduction

Artificial intelligence (AI) has been around for several decades. However, only since the 2010s have we witnessed AI's widespread
diffusion, in large part due to the big data revolution (McAfee and Brynjolfsson 2012) and the increased capabilities of contemporary
computers. Al, and its most recent development generative AI (GAI), has the potential to benefit a cornucopia of activities such as
automation (decision-making processes, robotics industry), online content creation and moderation, customer-facing processes
(chatbots), and e-commerce website management (and nudging). With these strategic opportunities, ethical challenges surface
(Marabelli and Davison 2025). For instance, biased systems (e.g., hiring/firing systems, Al supporting juridical systems) can lead to
discrimination and privacy concerns, such as how GAI employs user prompts (among other data sources) to train its algorithms.

While these AI issues are well-known and broadly discussed by IS scholars, AI's impacts on the environment are significantly
understudied. Focusing on AI's impacts on the environment is, however, important because Al is “resource hungry'” and contributes to
greenhouse gas emissions. For instance, the data centers powering Al already account for up to 2 % of global energy demand, a figure
that is close to what is currently consumed by the airline industry. The continuous rise in Al use will cause this figure to surpass 20 % of
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the global energy demand by 2030, according to a recent MIT report (Stackpole 2025). The reason for this vast consumption of power
relates to the fact that new Al models, notably GAI, require constant training (even when the systems are “in production™) and thus a
considerable amount of processing power. In addition, rigorous measures of GAI's impact on the environment are still unavailable
(Luccioni and Hernandez-Garcia, 2023). This represents an important departure from more traditional Al systems, for instance those
used to automate routine processes such as inventory management, which require less in the way of “constant” training. Given the
current pace of global warming due to the increased emission of greenhouse gases and given that global warming impacts are not
distributed evenly across communities worldwide, we need to ask and obtain answers to the following questions:

e What is the actual impact of GAI on the environment?

e Why is GAI so resource demanding?

e What can we do to mitigate GAI'’s negative impacts on the environment, especially when climate changes affect communities unevenly?

e What are the strategic opportunities for organizations and government concerning the use of GAI to mitigate global warming and address
climate changes issues?

The goal of this viewpoint article is to discuss the above questions and create awareness in the IS (information systems) community
regarding the ethical challenges and strategic opportunities associated with GAI that concern the environment. A discussion around
technologies and the environment constitutes a sociotechnical topic that will, we believe, appeal to IS scholars, and is something that
JSIS has historically supported, for instance with respect to sustainable IT and green IS (cf. Bengtsson and Agerfalk 2011; Butler 2011;
Dao et al., 2011; Petrini and Pozzebon 2009). GAI, like most technologies, has a bright and a dark side (Bohnsack et al., 2022). For
instance, and related to the environment, the recent push to adopt electric vehicles to reduce the short-term release of greenhouse gases
poses long term challenges associated with the disposal of batteries. Similarly, the widespread deployment of GAI focusing on auto-
mating routine tasks poses environmental concerns stemming from these systems’ demand to be constantly trained with large datasets.
This training indirectly requires considerable amounts of natural resources (primarily water) and electricity. In sum, GAI training leads
to the release of greenhouse gases, and the use of huge quantities of water. Meanwhile, global warming is a direct consequence of
greenhouse gas emissions.

Global warming contributes to such extreme climate events as storms/hurricanes/cyclones, droughts, wildfires and floods. What is
more, global warming unevenly affects communities worldwide. For instance, in rural, hot, less-developed areas, heat waves
disproportionately affect the poor who need to work either outdoors (agriculture, construction) or in factories and mills without air
conditioning systems and who cannot afford cooling systems in their own homes. However, GAI is mostly produced and consumed in
urban, rich areas where residents are more likely to have air conditioning systems both at home and in the workplace. Thus, while
global warming affects everyone, Al producers and consumers (where Al-related pollution originates) suffer fewer consequences
associated with global warming than those who are not (and might never be) Al producers or consumers. Consequently, the uncon-
trolled use of GAI by organizations has the potential to generate social injustices, specifically penalizing marginalized populations and
poor countries.

It is however important to note that, in the last few years, GAI was used, strategically, to mitigate the release of greenhouse gases
and respond to our fast-changing climate. For instance, organizations and government institutions have started to design systems
supporting smart cities (e.g., to reduce traffic, and therefore pollution), aiding agricultural systems (e.g., to optimize harvesting
techniques), and improving weather forecasting (Fang et al., 2023; Musa 2016). Nuclear power, a source of energy that involves the
release of minimal amounts of greenhouse gases, is used to generate electricity in limited amounts. For instance, in 2024 nuclear power
provided roughly only 9 % of the world’s electricity from 440 power reactors.” But GAI's widespread diffusion and the demand to
power these systems with green sources of energy might boost the development of nuclear plants worldwide. For instance, Google is
leading important initiatives related to nuclear power and partnering with Kairos Power aimed at “accelerat[ing] a new technology to
meet energy needs cleanly and reliably, and unlock the full potential of Al for everyone.”® Clearly, regulations at the local and global
level will play an important role enabling (or constraining) GAI-based innovations, together with disciplining organizations’ behaviors
with respect to the (mis)use of these technologies with respect to environmental impacts.

In sum, technologies can serve the goal of addressing grand challenges such as global warming (Nambisan and George 2024) and
implementing the application of cutting edge innovations to environmental sustainability (George et al., 2021). However, in our
opinion, current IS research has focused mostly on the apparently positive impacts of technologies on the environment. In this
viewpoint article, we aim to lay out our concerns regarding the increased use of GAI, while acknowledging its potential to benefit the
environment (or at least to not generate more harm). Fig. 1 below portrays a roadmap of our viewpoint of Al and the environment,
which reflects how the rest of the paper unfolds.

Next, following our roadmap, we provide an overview of GAI's impact on the environment and explain why GAI needs so much
more natural resources and electricity than traditional information systems. We then move to the ethical challenges and focus on the Al
value chain (all actors involved from design to use) because Al systems require significant resources throughout their lifecycle. To this
end, an important issue we discuss concerns the lack of rigorous and transparent ways to assess Al’s potentially negative effects on the
environment. We further provide examples of how Al might create social injustice due to its unequal effects on the environment and
reflect on what institutions could do to regulate the industry.

2 https://world-nuclear.org/information-library/current-and-future-generation/nuclear-power-in-the-world-today.
% https://blog.google/outreach-initiatives/sustainability/google-kairos-power-nuclear-energy-agreement/.
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Fig. 1. AI and the environment: a roadmap.

Finally, we move to the potential benefits of AI, which include the creation of smart cities (to reduce traffic, and therefore
greenhouse gas emissions), smart agriculture, weather forecasting systems and so on. The outcome of our roadmap consists of re-
flections on the strategic use of Al to address climate changes and advice for IS scholars on potential avenues of further research and
theorizing around Al and the environment, with the goal to advance knowledge and insight on this important topic in our field and
beyond - for instance computer science, management, and other scientific disciplines that study earth phenomena.

Overview of GAI’s Relationship with the Environment

GALI is a significant consumer of both natural resources, which may be in short supply, and electricity, which in many countries is
prevalently generated in coal-fired power stations that also emit significant volumes of greenhouse gases (Li et al., 2023b). In fact,
compared with “traditional” AI, GAI models require far higher volumes of natural resources and electricity, because their models need
to be constantly trained, as in the case of cf. for instance large language models (LLMs) used by GAI such as ChatGPT.

Natural resources primarily refer to water to cool down the systems that run the intense processing activities that training GAI
models requires. Electricity powers and keeps Al systems up and running 24/7. The demand for these resources to train GAI models in
data centers is destined to increase exponentially over time.” What is more, GAI applications need to be trained for their entire lifecycle
(Chandhiramowuli et al., 2023). For these reasons, organizations that use GAI intensively face challenges with meeting so-called net-
zero emissions, a goal for businesses such as Google,” one of the most prominent Al organizations. Net-zero emissions means that the
amount of emissions added to the environment should not exceed the amount taken away by the same organization or entity.
Emissions refer to greenhouse gases released into the atmosphere, which trap heat and contribute to global warming, a trend we’ve
witnessed for the past century at least.® These gases include carbon dioxide (CO5), methane (CHy), nitrous oxide (N2O), and fluorinated
gases (all these gases are collectively referred to as greenhouse gases). Carbon footprints are measured in tons of greenhouse gas
emissions, which are converted into carbon dioxide equivalent (COze), a standard unit for measuring carbon footprint. Pushing or-
ganizations to achieve net-zero emissions has unfortunately also led to greenwashing,” a phenomenon that we discuss later in this

paper.

* https://www.goldmansachs.com/insights/articles/Al-poised-to-drive-160-increase-in-power-demand.
5 https://sustainability.google/operating-sustainably/net-zero-carbon/.

6 https://earthobservatory.nasa.gov/world-of-change/global-temperatures.

7 https://www.un.org/en/climatechange/science/climate-issues/greenwashing.
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GAI is resource hungry

GAI is resource hungry.® Hugging Face, a US organization based in New York that develops Al applications in collaboration with
researchers at Carnegie Mellon University, found that it takes as much electricity to fully charge a smartphone as it does to generate an
image using GAI (Luccioni et al., 2023). Moreover, the use of these applications is widespread and available free of charge on online
platforms, which means that individuals can access these systems at all times and “play” with GAI. These systems benefit from
receiving countless prompts, all of which contribute to training. However, this crowd-based constant training increases the demand for
natural resources and electricity.

GAl is resource hungry because in order to be trained it needs a vast amount of data, generally obtained by scraping the web and by
analyzing users’ prompts. Resources also refers to the natural resources, such as rare earth metals (e.g., Gallium and Germanium)
needed to fabricate chips, but also, more importantly, water, a scarce resource in many countries yet one that is essential to cool down
high-speed computers. Some water can be reused, and some is discharged (in the environment), but a considerable amount
evaporates.’

For instance, Spain is a country that, on average, experiences very high temperatures in the summer with only mild temperatures in
winter, yet that has limited precipitation. In 2022, Spain struggled with drought to the point that local authorities recommended that
residents should use water parsimoniously and not water their gardens. Along with a high risk of wildfires (Pausas and Keeley 2021), as
a direct consequence of this drought the Castilla La Mancha region, which produces a quarter of all Spanish grain, was expected to lose
up to 90 % of its 2023 harvest. Nevertheless, in 2023, Meta announced plans to build a US$1.1 billion data center in Talavera de la
Reina, a city in central Spain, that would likely use around 176 million gallons of water/year for cooling.'® Similarly, Microsoft uses
water in Arizona (US) (a state where the average daytime temperature in its summer nears 100 °F/38 °C) to cool down Al servers.'! Li
et al. (2023a) suggest that global Al demand could cause data centers to consume 1.1 trillion to 1.7 trillion gallons of water by 2027.

Researchers at the University of California who studied water footprint related to AL found that GPT-3, a LLM that OpenAl released
in 2020, consumes roughly one liter of water to cool down a computer for every 40-100 responses. GPT-4 consumes even more (Li
et al., 2023a). In 2022, Google and Microsoft combined, consumed 8.5 billion gallons of water, mostly in their data centers, which is
equal to how much water 700,000 people in a rich country consume annually.'? Projections about future water use to cool down Al
systems are not encouraging: by 2027, the global demand for water for AI could be half that of the UK’s annual consumption (Wu et al.,
2022).

It is debatable whether Western countries should promote investments by large organizations such as Meta at the expense of their
own citizens’ water needs. But the fact that water is such a key resource makes it even more problematic for organizations to use these
systems in the Global South, where even residential properties often lack running water. This creates an unfair situation: Global South
countries, where water is often scarce, have less potential to create and use Al systems internally (let alone the possibility to become
profitable venues to host data centers from Global North countries). For instance, and solely referring to Africa, the United Nations
considers Chad, Comoros, Djibouti, Eritrea, Ethiopia, Liberia, Libya, Madagascar, Niger, Sierra Leone, Somalia, South Sudan, and
Sudan as “water insecure” countries.®

Along with natural resources such as water, most Al systems need a considerable amount of electricity for everyday use/training.
For instance, while a rack of web or mail servers generally runs on 7 kW of electricity, Al racks need up to 100 kW. The situation
becomes more serious when it comes to GAI. For instance, it costs OpenAl more than 50 GW-hours of electricity to train GPT-4, more
than 50 times more electricity than training its predecessor, GPT-3, required. In 2022, worldwide data centers, including Amazon’s
cloud and Google’s search engine, used about 1 to 1.3 percent of the world’s electricity.'* However, GAI-based tasks such as creating
an image from a prompt can be performed routinely, free of charge, on several onlinxe platforms that offer GAI. A 2023 report by the
International Energy Agency projects that the growth of Al will cause energy consumption in data centers to double by 2026.'° Because
of the lack of specific applications to measure AI's negative impact on the environment, it is hard to make long-term predictions.
Nevertheless, optimistic reports from the United Nations predict that by 2030 AI will be able to substantially support the environment
by “optimiz[ing] grids and increase[ing] the efficiency of renewable sources.'®

In summary, GAI’s resource-hungry nature calls for a reflection on how organizations currently use and will use Al systems. This
poses three issues that involve ethical considerations. The first concerns time. Organizations train AI models not only during the design
phase; these models, in ordet to provide timely answers and improve their response quality constantly need training. This means that

8 https://www.nytimes.com/2023,/10,/10/climate/ai-could-soon-need-as-much-electricity-as-an-entire-country.html.

9 https://dgtlinfra.com/data-center-water-usage/.

10 https://www.bloomberg.com/news/articles/2023-07-26/extreme-heat-drought-drive-opposition-to-ai-data-centers.

11 https://www.theatlantic.com/technology/archive/2024,/03/ai-water-climate-microsoft/677602.

12 https://www.economist.com/technology-quarterly/2024,/01,/29/data-centres-improved-greatly-in-energy-efficiency-as-they-grew-massively-
larger.

13 Water security refers to “the capacity of a population to safeguard sustainable access to adequate quantities of acceptable quality water for
sustaining livelihoods, human well-being, and socio-economic development, for ensuring protection against water-borne pollution and water-
related disasters, and for preserving ecosystems in a climate of peace and political stability”.(https://www.unwater.org/publications/what-
water-security-infographic).

14 https://www.iea.org/energy-system/buildings/data-centres-and-data-transmission-networks.

15 https://iea.blob.core.windows.net/assets/6b2fd954-2017-408e-bf08-952fdd62118a/Electricity2024-Analysisandforecastto2026.pdf.

16 https://news.un.org/en/story/2023/11,/1143187.
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they demand resources in the long term, substantially affecting GAI’s value chain. The second concerns the extent to which it is possible
to assess AI's direct and indirect impact on the environment; we recognize that our ability to assess impact is currently limited. The third
concerns social justice, and the uneven negative effects that Al has on the environment; AI's contribution to global warming affects
worldwide populations in different ways. We outline these three ethical concerns next.

GATI’s value chain and constant training

As we noted above, training AI models represents a major challenge for the environment because their computational capabilities
require significant resources. But it is important to note that training is not a one-off process. Models are initially trained during/after
the design phase to test their potential for deployment, the so-called “production” phase. Nevertheless, once an AI model operates in
the real world, the value chain of Al needs constant tweaks that humans supervise during the whole Al lifecycle (Chandhiramowuli and
Chaudhuri, 2023). Accordingly, the nature of Al models leads to two important ethical implications. First, the “automated” part of this
constant training will intensely and continuously use precious resources (i.e., water and electricity). Second, organizations often
outsource the “manual” part to contractors and gig workers in the Global South. These people, located in countries like India, Pakistan
and Venezuela, are often egregiously exploited. For instance, minors are often recruited to perform microtasks to train Al systems for
little pay over long shifts and in unhealthy work conditions.'” Thus, we can see that other ethical considerations involving exploited
Global South workers compound AI’s ethical implications for the environment.

The fact that GAI systems need constant training has important ethical consequences affecting its value chain, which seems to
generate value only for some actors in the chain (i.e., the high-tech organizations that produce and use these systems at the expense of
contractors in their lifecycle and end users). A focus on end users here is important because Al systems also affect consumer spending
via so-called online nudging practices, which e-commerce websites use to subtly persuade users to purchase what they don’t need
(Mirbabaie et al., 2023). For instance, Amazon pushes customers to purchase several items, often located in different warehouses with
options such as “same day” or “two-hour” delivery, which helps to support a gig economy that comprises workers who drive long hours
day and night to deliver items.

The practices described above regarding the gig economy lead to unnecessary emissions and extra maintenance costs, e.g., from
using private vehicles more often. In addition, ground transportation has its own issues, regardless of whether gig workers use their
own vehicles or company-provided vehicles (cf. Amazon trucks); producing and using tires creates environmental hazards. The
manufacture of tires requires both nonreusable components and electricity, while the use of tires releases tire wear particles from
abrasion that become especially dangerous when entering aquatic environments (Tamis et al., 2021; Trudsg et al., 2022). Furthermore,
this example of Al-powered nudging on websites, with side effects associated not just with ethical implications concerning nudging but
also with ethical implications concerning more driving (including potential fuel consumption and the plastic materials used to package
items), represents just one among many examples involving secondhand effects of AI. We suggest that studying the environmental
implications of pervasive and invasive Al use should also account for indirect effects. We are aware that it is generally difficult to
quantify a phenomenon’s indirect effects. In the case of Al and the environment, even direct effects that might turn into an ethical issue
are difficult to quantify as we explain next.

Al assessments and ambiguities

While it is well known that Al systems require a considerable amount of resources, we lack rigorous ways to measure Al’s actual
carbon footprints. This nontransparent aspect of GAI's impact on the environment creates opportunities for organizations to pursue
environmentally-unfriendly initiatives with poor vetting from institutions and the general public. Opportunistic behaviors associated
with environmentally-unfriendly initiatives in general terms are particularly prone to occur within the global tech industry and ac-
count for as much as 3.9 % of worldwide greenhouse gas emissions, with Al representing a significant fraction of that number.
However, it is not clear how much AI and GAI specifically (notably the resources required to train models) contributes to the carbon
footprint, and scholars have suggested creating a centralized repository to report and track Al-related emissions (Luccioni and
Hernandez-Garcia, 2023). For instance, according to Luccioni et al. (2023), between 2017 and 2021, the volume of electricity that four
organizations (Meta, Amazon, Microsoft, and Google) used doubled, and global data center electricity consumption has grown by up to
40 % annually in recent years. It now accounts for almost 2 % of global electricity consumption and contributed 1 % of energy-related
greenhouse gas emissions in 2022 (Stackpole 2025). However, to what extent Al specifically contributes to these figures remains
unclear. It is nevertheless credible to suggest that AI's contribution to greenhouse gas emissions will grow in the near future, because of
the race to build powerful GAI systems (MIT News 2025).

Dodge et al. (2022) built a framework to measure the carbon footprint of Al applications that run in the cloud. They also noted that
organizations that act strategically with respect to where they build data centers (i.e., their physical locations) can reduce AI's carbon
footprint. Picking strategic locations to build data centers involves building facilities in regions with a colder climate (e.g. in higher
latitudes or altitudes). This can reduce how much water or electricity they use. Needless to say, systems trained in areas where energy
production relies more heavily on fossil fuels are more prone to releasing more greenhouse gases (cf. also Kirkpatrick 2023).

While organizations such as Microsoft have attempted to release accurate information on greenhouse gas emissions, it is much more

17 https://www.wired.com/story/artificial-intelligence-data-labeling-children/.
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difficult to obtain similar information with respect to the supply and value chains (Joppa et al., 2021). In addition, organizations
developing Al models do not have specific incentives to share quantitative data on resources used to build and run such models. In fact,
in many countries, no laws mandate organizations to report on their carbon footprint. This echoes longstanding problems associated
with the same (high-tech) organizations not being willing to share internal research findings, e.g., on the potential issues associated
with social media issues (addiction, etc.) and damages to adolescents. A good example from the near past is Instagram, where only
thanks to a whistleblower was the public made aware of the platform’s negative effects on young people with eating disorders
(Marabelli and Newell 2023).

Assuming that organizations will be required to share their Al carbon footprint (or will decide to do so for marketing purposes, i.e.,
to look good to the general public), they may anyway attempt to game the system through greenwashing practices, encouraged by the
lack of objective and precise measurement of greenhouse gas emissions. For instance, a large study by the European Union (EU)
concerning organizations across EU member countries'® found that, in 2022, 53 % of green claims published by organizations gave
vague, misleading, or unfounded information while 40 % of claims had no supporting evidence. But even when organizations report
precise data on their green claims, they can still purchase carbon offsets without changing their behavior. Carbon offsetting, according
to earth.org, refers to “a process through which organizations or individuals compensate for their greenhouse gas emissions by
investing in an equivalent removal of such emissions from the atmosphere. This offsetting occurs through projects like reforestation,
renewable energy, methane combustion/collection, and energy conservation.'® Carbon offsetting gives organizations credits in the
form of tokens that they use to account for net climate benefits from one entity to another; entities can trade these credits once a
certified authority approves them.

Organizations keen on pursuing environmentally unfriendly or unsustainable Al-related projects might purchase credits by giving
money to initiatives, e.g., to preserve forests in South America, while keeping up with intensive GAI training and with this achieving
net-zero emissions, because the purchase of credits offsets the release of pollution generated by their computers. This practice is, in our
opinion, both dangerous and disingenuous: it avoids the need to consider how to create long-term solutions for developing Al systems
in a sustainable manner and, more importantly, does not address issues associated with the uneven distribution of negative conse-
quences stemming from global warming, a topic that we discuss in the next section.

Al and social justice

AI's impact on the environment is not evenly distributed across countries and populations. A 2017 United Nations study sys-
tematically analyzed climate change with respect to social justice and concluded that “initial inequality causes the disadvantaged
groups to suffer disproportionately from the adverse effects of climate change, resulting in greater subsequent inequality” (Islam and
Winkler 2017 emphasis in original). There are numerous examples of such situations. For instance, Meta and Amazon are known to
have shown interest in building data centers in Spain and in the US state of Arizona state respectively (both regions being prone to
drought). These examples of Global North countries add to the list of similar practices happening in the Global South, where the
consequences of climate changes are more likely to affect citizens. For instance, Amazon (among other organizations) is building data
centers in Huechuraba (Chile), a district with ongoing drought problems. Amazon’s spokespersons reported that the organization is
“DIA (Declaration of Environmental Impact) compliant®””, yet this begs the question as to whether organizations realize that legal
compliance does not equate with being ethical.

In a similar way, in January 2025, Alibaba (a Chinese multinational technology company specializing in e-commerce, retail,
Internet, and technology) opened a data center in Querétaro, Mexico, allegedly to bring “world-class cloud technology to support local
businesses”'”. Here too we wonder about the extent to which local communities will be penalized, as data centers are water and
electricity demanding and Mexico is already a country where both resources are scarce. Amazon, Microsoft and Google together make
up 65 % of the world’s cloud service market and are the leaders in data centers in Africa, with operations mainly concentrating in South
Africa.?? The IEA?® (International Energy Agency) forecasts that the US and China, the world’s two top greenhouse gas polluters, could
consume a lot more electricity by 2027. In addition to large providers wanting to build data centers in the Global South, local or-
ganizations are also building their own data center infrastructures. For instance, in Nigeria, organizations are building their own data
centers, which represent affordable alternatives for local communities, if compared to large providers.>* While on the one hand one
might suggest that large providers take advantage of weak economies in the Global South, on the other hand, it is arguable that if a data
center has to be built in a weak economy, larger providers could be better positioned to use more energy-efficient hardware (when
compared with local providers that may not be able to invest in energy-efficient equipment) and offer more capabilities to benefit the
region or country.

All the above evidence is worrying, given that countries that intensely use Al to foster automation release a disproportionally higher
level of Al-related pollution to the environment as compared with countries that minimally use AlL. However, the impact of Al on the
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https://www.canalys.com/newsroom/worldwide-cloud-services-q2-2024.

https://www.iea.org.

https://restofworld.org/2025/aws-google-cloud-nigeria-alternatives/.
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environment is felt globally. For instance, India (which has nearly 18 % of the world’s population) generates just 3 % of the world’s air
pollution but pays a high price due to global warming (e.g., it recorded temperatures as high as 110 °F/43.3 °C in June and July
2022%°). In June 2023, temperatures in India reached the “limits of ‘survivability’%” with 116 °F/47 °C recorded in Uttar Pradesh,
affecting 220 million people, and causing nearly 50 additional deaths. In the same period, Phoenix, Arizona, US (where Microsoft has
built data centers), reached temperatures over 109 °F/42.7 °C. But Arizona and Uttar Pradesh differ substantially. Most residents in
Arizona can adequately deal with hot temperature; more than 90 % of urban homes have air conditioning systems.?” Meanwhile, in
Uttar Pradesh very few people have air conditioning systems.”® However, only 8-10 % of Indian households have air conditioning
systems, and the electricity itself is often subject to outageszg (Pavanello et al., 2021).

Overall, the Global North generates more heat, and its residents deal with it by fighting high temperatures using resources that, in
turn, contribute to global warming. On the other hand, the Global South contributes far less to global warming but suffers more
because it generally does not have the resources to deal with it, and air conditioning systems make matters even worse because they
consume yet more electricity. This reflects evidence that countries and populations that contribute the least to global warming pay the
highest price. In 2023, The Guardian conducted a study with Oxfam®® and the Stockholm Environment Institute®’ (among others)
called The Great Carbon Divide in which they studied causes and consequences of carbon inequalities and the disproportionate impact of
rich individuals and countries (named “the polluter elite). According to the study, it would take 1,500 years for someone in the bottom
99 % of the world’s population to produce as much COs as the richest billionaires do in one year.

The 2023 Al global index>? benchmarks 62 countries based on their Al investment, innovation, and implementation. The US, China,
and the UK top the list, while Kenya, Nigeria, and Pakistan are the bottom three. As the deployment of GAI becomes prevalent, AI’s role
in global warming will also increase, further penalizing countries that don’t use this technology. If we focus on local contexts, the
benefits of using Al are remarkable. For instance, consider smart cities (which we discuss later in this article): regulating traffic could
lower CO; emissions to a degree that more than compensates for the emissions that result from running Al models that calculate how to
regulate traffic. However, by definition, global warming is a “global” issue. Therefore, the logic that relies on AI’s cost-benefit analysis
should shift from a local to a global perspective. Is it ethical to reduce the pollution in San Francisco with advanced (and resource
demanding) GAI models, if doing so means releasing greenhouse gases contributing to global warming, and thereby penalizing other
regions in the world with little to no means to cope with rising temperatures, such as the previously mentioned example in India? We
argue that it is dangerous to try to measure Al pros and cons locally, because this (typically Western) approach ignores (local) Global
South realities where Al is seldom used, and where populations experience only the negative consequences of the mass adoption of
innovations (including AI) generating greenhouse gases.

National and global regulations: protecting (or not) the environment from Al use

The emergence of algorithmic-based data collector systems, associated with the massive use of Al (and more recently GAI) have
increasingly become the focus of government regulations (see the EU’s General Data Protection Regulation®> (GDPR) and AI Act,**
China’s Personal Information Protection Law"> (PIPL), and the US’ Blueprint for an Al Bill of Rights>®). These regulations focus mainly
on data privacy (cf. GDPR and PIPL), something now very relevant to Al if we consider that the level of confidentiality with which
prompts from users are treated is unclear (cf. EU AI Act and US Al Bill of Rights). However, most countries lack specific regulations on
how organizations should (or should not) use Al in a sustainable fashion. For instance, the EU’s Al Act mentions that “This regulation
aims to ensure that fundamental rights, democracy, the rule of law and environmental sustainability are protected from high-risk AI”,
but it does not specify what kind of high-risk activities qualify as dangerous for the environment. The AI Act distinguishes between low,
medium, and high risk (of using AI) based on the extent to which humans are directly affected by the consequences of using AL>” For
instance, an Al that prioritizes access to an important vaccine would be defined as high risk because its outputs are close to humans
(and a problematic algorithm would impact them directly), whereas an Al that serves as a videogame engine or that manages an
antispam system would be defined as low risk. The problem here is about invisible connections between, e.g., training a LLM and the
consequent harm to humans. In addition, the EU’s framework doesn’t account for the secondhand environmental implications of using
Al For instance, how much greenhouse gas production does programming and using videogames cause? Al and videogames are

%5 https://www.technologyreview.com/2022,/07,/05/1055436/download-india-deadly-heatwaves-climate-change-carbon-removal/.

26 https://www.cnn.com/2023/06/26/india/india-heatwave-extreme-weather-rain-intl-hnk/index.html.

27 https://www.theguardian.com/us-news,/2022/jan/27 /phoenix-arizona-hottest-city-cooling-technologies.

28 https://www.npr.org/sections/goatsandsoda/2022,/08,/02,/1114354904/opinion-life-hacks-from-india-on-how-to-stay-cool-without-an-air-
conditioner.

2 https://www.theguardian.com/world/2023/dec/05/india-unstoppable-need-air-conditioners.

https://www.oxfamamerica.org.

https://www.sei.org.

https://intersog.com/blog/ai-dominant-players-and-aspiring-challengers/ (raw dataset of this study available here: https://www.kaggle.com/
datasets/katerynameleshenko/ai-index).

33 https://gdpr-info.eu.
https://www.europarl.europa.eu/news/en/headlines/society/20230601ST093804/eu-ai-act-first-regulation-on-artificial-intelligence.

35 http://en.npc.gov.cn.cdurl.cn/2021-12/29/c_694559.htm.

https://www.whitehouse.gov/ostp/ai-bill-of-rights/.

https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai.
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considered low risk because the EU framework is blind when it comes to proxy effects.

In the US, the AI Bill of Rights focuses on sustainability in an even more indirect way. It primarily concentrates on unwanted
consequences of Al (and automated systems in general) such as biases that can lead to discrimination and privacy issues (e.g., personal
data being used without consent and intellectual property issues in reference to how GAI is trained with Internet data). What is more,
the US AI Bill of Rights is nonbinding, which means that, at present, it contains only unenforceable recommendations. Linking an
imperfect algorithm to an environmental problem will be even harder than is the case with the EU regulations. Interestingly, on
February 1, 2024, Senator Edward J. Markey of Massachusetts introduced the Artificial Intelligence Environmental Impacts Act to
regulate how organizations measure and report Al's environmental impacts.>® This Act represented an important policy step, espe-
cially given the notoriously poor extent to which the US has engaged with environmental issues (Marabelli 2024). However, in 2025,
the Trump administration has reverted most Al-related protections for end users. For instance, the January 23, 2025 presidential
executive order titled “Removing Barriers to American Leadership in Artificial Intelligence” Section 5 officially revoked the 2023
executive order 14,110 “Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence”, essentially allowing companies
to develop GAI systems with very few guardrails, including environmental considerations.

China’s PIPL doesn’t contain environmental recommendations and is more focused on data privacy, even if its impact on GAI is and
will be substantial, especially with respect to how this technology leverages user prompts to train its algorithms. Nevertheless, China
lately has taken strong actions to force organizations to reduce their carbon emissions, and Al seems to contribute positively to that
reduction. For instance, several Al initiatives in China contribute to reduce carbon emissions by improving industrial and information
structures and enhancing innovations that support green technology (e.g., innovations focused on smart cities) (Chen et al., 2022).
Other examples in China that focus on the environment include initiatives to build underwater data centers.>’ The underwater setting
naturally cools the hardware, which saves electricity and fresh water while also preserving land space.*’

Overall, most jurisdictions lack legislation that considers the impact of Al on the environment. Therefore, more such legislation is
required to ensure that organizations take advantage of Al systems ethically, i.e., with environmental considerations kept firmly in
mind. The greenhouse gas emissions associated with GAI use currently constitute a relatively small fraction of the total volume of
emissions. However, Al continues to grow at a fast pace and as result the fraction will increase in size. It is our opinion that legislation
should be promulgated globally to promote its ethical use. Overall, organizations are revenue-driven and very few of them will adopt
environmental-friendly policies if these policies penalize their bottom line, unless they are legally mandated to do so.

Strategic use of Al for the environment

Environmentalist movements that push organizations to behave ethically, together with newly enacted laws and regulations
(companies are generally responsive to both due to profits/reputation and compliance issues, respectively), have led to Al initiatives
that address ethical Al issues that relate to the environment and specifically global warming. For these reasons, a number of initiatives
have emerged in recent times which aim to take advantage of the potential of Al to mitigate threats posed by climate changes, and the
associated global warming issues such as extreme weather conditions such as storms/hurricanes/cyclones, droughts, wildfires, and
floods. Organizations, public administrations and governments have the opportunity to use Al strategically, and the duty to do so
ethically, in order to positively affect climate changes thereby showcasing ethical behavior and conduct.

We next lay out ways in which organizations can pursue Al strategizing, in the context of climate change. While the list below is not
meant to be comprehensive, we believe that it is a good start to bring awareness of the fact that Al, along with its environmental
pitfalls, can nevertheless be used ethically and strategically, to address climate changes.

Smart cities: This refers to cities designed with embedded technologies that provide automated services to citizens and minimize
natural resource use. These cities can use data that Al systems collect via sensor technologies to engage in such activities as: improving
traffic flow, optimizing water supplies, handling waste, investigating criminal activity, and performing other community services
(Musa 2016). Digital twin technologies can help redesign key city operations (such as traffic) as in Barcelona, which has begun to
create its digital twin. Sensors around the city collect real-time data to help decision makers make Al understand how to analyze and
predict traffic and energy usage. In a 2024 interview with the Financial Times,*! Jordi Cirera Gonzalez, director of the Knowledge
Society at Barcelona City Council, said that “Thanks to Al, we can answer questions about what is going to happen without knowing
exactly the law that drives the system... but you need good data. Without it, you cannot train an artificial intelligence system.” This
surfaces a potential ethical issue concerning how much data from private citizens must be collected to build a digital twin to develop
smart cities. For instance, residents wanting to access “smart parking” might need to accept being monitored (via a GPS-equipped car’s
onboard devices). Only wealthy people will be able to buy their privacy by paying for more expensive parking spaces.

Smart farming: also known as digital (or e-) agriculture, smart farming concerns farmers’ ability to collect and analyze data
(including with AI systems) on various harvesting-related activities. The United Nations considers smart farming a digital revolution in

38 https://www.markey.senate.gov/news/press-releases/markey-heinrich-eshoo-beyer-introduce-legislation-to-investigate-measure-
environmental-impacts-of-artificial-intelligence.

3% https://www.scmp.com/news/china/science/article/3299313/chinas-subsea-data-centre-could-power-7000-deepseek-conversations-second-
report.

40 https://circleid.com/posts/20231205-china-launches-worlds-first-underwater-data-center.

41 https://www.ft.com/content/45737bf0-8f69-46da-bd0b-98986be74a00.
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the agriculture field.*” For instance, an ML regression algorithm can determine the required water resource level for farming a
particular crop in a specific season or at certain temperatures (Akkem et al., 2023). Smart farming probably represents one of the most
advanced, localized Al applications, yet with global reach. For instance, increasing a particular crop’s production in one region via Al
could benefit (or harm) other, less advantaged regions due to supply/demand effects on sale prices.

Weather forecasting: Al-based weather forecasting systems represent another way in which one can use Al technology for good.
For instance, recent developments into 3D neural networks have offered substantial improvements to current forecasting models (Bi
et al., 2023). The World Economic Forum explains*® how AI can outperform mainstream weather forecasting systems with specific
reference to GraphCast, Google DeepMind’s Al weather forecasting model which Google has trained with 40 years of historical weather
data.** Advanced systems that can predict weather in the longer-term (weeks rather than days) can be used globally to deliver timely
aids to regions hit by heat waves or floods and to alert people in areas that face potential extreme weather conditions, where imprecise
forecasting might lead to more casualties.’® Thus, more accurate forecasting could help save lives. Weather-related predictions have
recently involved the forecasting of dust and sandstorms, a very common (and property-damaging and life-threatening) phenomenon
in countries such as China, Saudi Arabia and Pakistan. Local researchers have recently applied AI models to better predict dust and
sand storms, potentially saving money and lives in these regions (You 2024).

Al and earthquakes: Until recently, predicting the location, depth and intensity of earthquakes seemed to be an impossible task.
However, an ongoing project funded by the European Commission called TECTONIC*® seems to have the potential to leverage Al to
predict earthquakes with a degree of precision that will outperform traditional systems based on historical seismic activities, strain
accumulation in rocks, and changes in ground elevation.*’

Al and wildfires: According to space.com (UK), Al is developing the ability to predict wildfires, a phenomenon that has become
increasingly common worldwide, because of rising temperatures and droughts.*® Geostatic satellites already do a good job in mapping
the earth’s “hot spots”, i.e., those more prone than other areas to wildfires. Al can analyze factors including the emergence of smoke,
the incidence of fires and the disturbance of vegetation, and relate them with other parameters such as vegetation type, climate,
landscape, fire susceptibility mapping, and soil deposits in order to identify wildfires patterns (Ahmad et al., 2024). The constant
evolution of Al applications to aid firefighters managing wildfires is documented by a March 2025 report in the Wall Street Journal,
which describes techniques such that “AlI bots that now serve as digital fire-lookouts and crucial eyes ...” and are able to spot wildfires
via camera sensors before they spread.*’

Al and floods: Floods are one of the most common natural disasters which disproportionately affect the Global South, where
countries often lack dense streamflow gauge networks (Rentschler et al., 2022). A recent Nature study (Nearing et al., 2024) docu-
mented how Al can improve predictions concerning floods by using long short-term memory (LSTM) networks (Hochreiter and
Schmidhuber 1997) to predict daily streamflow through a 7-day forecast horizon. While strong winds due to storms/hurricanes/cy-
clones lead to structural damages (buildings, infrastructures, trees), the associated floods are the main cause of loss of lives.

Al and nuclear power: Microsoft recently launched an initiative®® to use nuclear power (CO; emission-free technology) to boost Al
systems, which however poses regulatory issues, at least in the US. Nuclear power received attention during the 2023 COP28, the
United Nations’ annual climate conference. Using nuclear power to supply energy-demanding systems has long been a contentious/
controversial subject (e.g., due to the environmental challenges associated with dumping radioactive waste and the hazards associated
with nuclear accidents). Nevertheless, the possibility of using nuclear power to boost Al systems is worth studying, because nuclear
power has the potential to be a zero-emission clean energy source, if managed correctly.

Along with the above initiatives, the Stanford 2024 Al index report”' mentions several areas where Al can be used to benefit the
environment. These include the management of thermal energy storage systems (Olabi et al., 2023), improving waste management
(Fang et al., 2023), improving efficiency of cooling systems in buildings (Luo et al., 2022), and enhancing urban air quality (Shams
et al., 2021). However, because we lack accurate means to measure the negative impact of Al on the environment, it is challenging to
say whether the benefits of Al for the environment outweigh the pitfalls associated with global warming.

Overall, the ethical challenges associated with Al use and the environment may be balanced by strategic opportunities for orga-
nizations as well as public administrations and governments. Importantly, as we illustrate above, some grey areas prevent full
assessment of the risks Al poses to the environment. These concern what it really means for an organization to achieve “zero-net”
emissions, the (so far) impossibility of accurately quantifying AI’s carbon footprint, and the lack of laws and regulations, locally and
globally, around the use of natural resources and energy to support Al systems. Table 1 summarizes these insights.

42 https://www.fao.org/3/ca4887en/ca4887en.pdf.

43 https://www.weforum.org/agenda/2023,/12/ai-weather-forecasting-climate-crisis/.

44 https://www.science.org/content/article/ai-churns-out-lightning-fast-forecasts-good-weather-agencies.
45 https://www.fastcompany.com/90923189/weather-forecast-heat-wave-accuracy-life-and-death.

46 https://cordis.europa.eu/project/id/835012.

47 https://www.usgs.gov/faqs/can-you-predict-earthquakes.

48 https://www.space.com/how-scientists-are-using-artificial-intelligence-to-predict-wildfires.

49 https://www.wsj.com/tech/ai/these-ai-cameras-detect-wildfires-before-they-spread-6b6e3229.

50 https://www.wsj.com/tech/ai/microsoft-targets-nuclear-to-power-ai-operations-e10ff798.

51 https://aiindex.stanford.edu/wp-content/uploads/2024,/04/HAI_Al-Index-Report-2024.pdf.
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Situations

Challenges

Opportunities

Call for actions for IS scholars

— Current Al models require

massive datasets

— Al is increasingly becoming

resources hungry

— Al organizations need to build

large, cost-efficient data
center

— Al uses hold “hidden” negative

effects, e.g., on gig workers

— Reducing the size of Al
training data

— Identifying
various”green” resources
— Limiting offshoring of
data centers

— Considering indirect
effects of intense use Al

— Designing smart cities
and farming

— Improving weather
forecasting

— Improving timely alert
systems for earthquakes

— Increasing prediction of
wildfire spreads

— Building on topics such as green IT and sustainability to
more specific topics on Al and the environment

— Creating opportunities for topical discussions (i.e., panels,
tracks) at IS conferences

— Promoting cross-disciplinary research involving natural and
applied science and computer science scholars, for instance

— Considering the key role of institutional theories in framing
country-level and global issues associated with AI's impact on

the environment
— Ar’s supply chain involve
intense use of human capital

— Avoiding exploitation of
workforce

— Using nuclear power to
power Al (and more)

Looking forward: practical solutions and a research agenda for IS scholarship

At the present time, considerable uncertainty surrounds the development of AI, and especially GAI, whose LLMs are very resource
hungry. Nevertheless, we foresee practical solutions as well as important research opportunities for IS practitioners and scholars
engaged in the strategic use of emerging technologies such as Al (i.e., Al strategizing) to deal with, and contrast climate change.

Practical solutions to address global warming with GAI

With respect to practical solutions, we argue that there are two main ways AI’s resource-demanding nature could be addressed. The
first concerns exploring techniques that can train models with relatively small datasets including models that can be trained with as
few as 10,000 data points, which would substantially reduce energy demand. This is supported by research suggesting that, in cir-
cumstances where outcomes are known, neural networks (Al computer systems modeled on the human brain and nervous system) may
require only minimal amounts of training data (so-called shallow neural networks). One major limitation of this approach is that small
datasets can be used only in specific settings, and can be hardly applied to GAI (Ng 2021). It is also worth noting that using small
datasets, along with addressing environmental issues, can help deal with risks associated with Al being trained with its own data, a
phenomenon known as Al cannibalism (Marabelli 2024). In fact, GAI outputs are increasingly populating online platforms and dis-
cussion groups. Nina Schick from Yahoo Finance projected that, by 2025, nearly 90 % of online content could be created by GAL>”
Deepseek, a Chinese GAI organization headquartered in Hangzhou, Zhejiang, is currently developing LLMs whose training costs are
dramatically lower than those of other organizations such as OpenAl. This process, known as “distillation”, aims at creating models
that are cheaper (and less energy demanding) to produce and less expensive for organizations to adopt.>> On paper, Deepseek has the
potential to positively affect GAI's impact on the environment. However, some argue that when AI models become cheaper and
therefore more accessible to organizations, then they also become more widespread, partially offsetting the benefits associated with
distillation.

The second way to address AI's resource-demanding nature concerns using renewable (green) energy sources to power this
technology, given that in some instances natural resource-demanding LLMs must be employed. However, these resources are scarce and
should be used in tandem with strategies concerning how and where data centers are built; for instance, it is important to identify
locations with cooler climates while minimizing the disruption of local sites and landscapes, or even to build data centers underwater
(Periola et al., 2022).For instance, along with underwater data centers previously mentioned in China, Microsoft is undertaking a large
scale project (Project Natick) that concerns building underwater data centers near some of the US’s coastal cities.” Additional ideas
(perhaps premature, yet worth mentioning for completeness of information) concerning strategic locations where to build data centers
include outer space. In fact, in March 2025, Lonestar,”> a US-based data storage and recovery organization explored opportunities to
store data in outer space. Outer space provides unlimited access to solar powers; it is possible to radiate excess heat in space, according
to Damien Dumestier, a space systems architect at the European aerospace conglomerate Thales Alenia Space.’®

While GAI benefits not related to the environment go beyond the scope of this viewpoint article, it is important to mention potential
GAI strategic uses in a variety of contexts. Examples include healthcare/disease prevention, educational settings to assist people with
disabilities and promote inclusion in schooling, disaster management and the streamlining of production processes for the faster
distribution of life-saving resources.’” These are just a few examples of the bright side of GAL But we wonder if, looking forward, all
these GAI benefits shouldn’t be put on hold, at least in part, as an unlivable environment will prevent the mass diffusion of positive Al-

https://finance.yahoo.com/news/90-of-online-content-could-be-generated-by-ai-by-2025-expert-says-201023872.html.
https://www.ft.com/content/c117e853-d2a6-4e7c-aea9-e88c7226c31f.
https://natick.research.microsoft.com.
https://www.lonestarlunar.com.
https://www.technologyreview.com/2025/03/03/1112758/should-we-be-moving-data-centers-to-space/.
https://insights.fusemachines.com/possibilities-for-ai-driven-growth-in-underserved-countries/.
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related innovations, and thus render nugatory all these potential strategic positives.
A research agenda for IS scholars engaged in topics concerning Al and the environment

Given the increasing relevance of sustainable Al for policymakers, organizations, and society, we believe that IS scholars should
take this issue seriously. Yet, words are not enough: what actions can we actually take to make a difference? Despite a few exemplary
contributions on sustainable AI (Nishant et al., 2020; Schoormann et al., 2023) or, more generally, digital sustainability (Dao et al.,
2011; Kotlarsky et al., 2023), the IS field has yet to delve into the topic, even though it very much concerns sociotechnical systems and
the ethical implications of the design and use of technologies, two key, interwoven subjects that should be central to an IS research
agenda. For instance, recent articles discussing digital approaches to “Societal Grand Challenges” (i.e., Nambisan and George 2024) do
not see Al as a threat for the environment at all. Instead, and in line with mainstream views of technology, they only see the potential
for Al to solve some grand challenges. Interestingly, Nambisan and George (2024), drawing on Ostrom (2010), elaborate on the
concept of common-pool resources (the environment being one). This provides opportunities to take relevant IS research further and
theorize on how emerging technologies should (or should not) contribute to managing “commons” such as the air we breathe or the
atmosphere in which we live.

Our community, the AIS (Association for Information Systems), appears to be increasingly sensitive to technologies and sustain-
ability, which sends good signals to related scholarship. Two recent conferences witnessed firstly a panel on the role of IS in (tech-
nology-related) sustainability (Ixmeier et al., 2024), and secondly a track on “Societal impacts of 1S°%. Thus, sustainability-related
topics, albeit not specific to Al and the environment, were addressed. Although these efforts may seem paltry, not least because
they do not focus on the environment specifically, they are at least steps in the right direction. We recognize that studying the
environmental impacts of Al requires competences that might go beyond the knowledge of most IS scholars. We therefore advocate for
an interdisciplinary approach that crosses the sociotechnical axis of our field (cf Sarker et al., 2019). This interdisciplinary approach
should involve both technical as well as behavioral sciences appealing to IS scholars, especially since we view the current and future
developments of GAI as strategic (and challenging) for organizations, communities, governments/institutions etc. It is not unusual for
IS researchers to build on the strategy literature. For instance, Nambisan and George (2024) discussion of digital sustainability draws
on the strategy literature.

In the same vein, strategy scholars will have to borrow insights from the IS literature to highlight GAI characteristics that can be key
to competitiveness while using this technology in a way that is not detrimental to the environment. Given the interweaving relevance
of GAI across the two disciplines (IS and Strategy), it is both difficult and of questionable value to separate the two literatures. Indeed,
we should arguably avoid working in silos and instead aim at cross-fertilization and mutual exchange of knowledge and insights. What
is however important, in our opinion, is to ensure that GAI is not solely viewed as a strategic asset that can be leveraged to bring
economic value to the organization. GAI must also be viewed as a technology that has the potential to be detrimental to non-economic
indicators, including the sociocultural values of humans and the imperative that we respect and conserve the natural environment.

A noninclusive list of potential areas (and associated research questions) that IS scholars engaged in Al strategizing should explore
are the following:

Concerning Al being “resource hungry”:

— What are the alternative strategies that avoid broad web scraping practices and could be enacted to train complex models, and what
is the associated need for computing capacity to process all these data? What are the risks and benefits of using small and synthetic
datasets? Here, IS scholars could benefit from collaborations with computer science academics and practitioners whose research
focuses on small-size Al models and datasets. Computer scientist Andrew Ng, one of the pioneers of Al, suggests that it is possible to
reduce datasets to as few as 10,000 examples, “a sort of threshold where the engineer can basically look at every example and
design it themselves and then make a decision” (Hao 2021). How could these (technical) insights be incorporated into (and
contribute to) relevant IS literature?

Concerning the Al value chain:

— How is it possible to control and limit hidden practices such as the offshoring of labeling processes which add to the already
prominent ethical issues concerning sustainable AI? Is sustainable AI only an environmental concern, or does the way Al is used in
practice involve other aspects of sustainability, such as the exploitation of Global South workers through unethical offshoring? The
IS strategic literature on offshoring is very rich and was pioneered by JSIS (cf. Abbott et al., 2013; Kranz 2021; Schermann et al.,
2016); we believe that scholars can build on this body of research to theorize around environmental issues associated with the Al
value chain across countries and continents. At the interdisciplinary level, this requires IS scholars to work strategically with
colleagues in HR (Human Resources) and even Sociology as we explore impacts of Al in other domains.

Concerning measuring Al's impact on the environment:

58 https://icis2024.aisconferences.org/submissions/track-descriptions/#toggle-id-5.
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— How is it possible to account for (and measure) secondhand environmental effects of AI? These second-hand effects concern online
nudging that leads to more (unnecessary) purchases but also to gig workers being asked to perform almost real-time deliveries.
Almost real-time delivery may include extra trips to the same customer or in the same neighborhood. What are other secondhand
environmental effects of AI? Allied disciplines here could include Computer Science, Remote Sensing (i.e. use of satellite data),
Transportation Science, and Operations Research. Here, interdisciplinary research can be pursued by seeking collaborations with
communities such as the FAccT (Fairness, Accountability, and Transparency) community,” that studies social phenomena con-
cerning Al such as environmental concerns (cf. Dodge et al., 2022) using a sociotechnical lens, but with a strong technical
background.

Concerning Al and social justice:

— How is it possible to empower Global South countries and make sure that they too benefit from Al advances? Niche IS communities
such as ICT4D (Information and Communication Technologies for Development) should play a relevant role in shedding light on
the societal impacts of environmental changes due to intense use of Al (even in the Global South). For instance, adverse digital
incorporation (Heeks 2022) is a notion that theorizes around the detrimental impact for countries, societies and cultures that are
incorporated into digital systems. These issues are prominent in the ICT4D community; in a global environment characterized by
adverse digital incorporation, the ICT4D research agenda is positioned within the debate on social inclusion in the broader
spectrum of critical data studies, a field which views data as immersed in their social and political context (Dalton et al., 2016;
Masiero 2022).

Concerning policymakers:

— How should governments require organizations to provide Al data in ways that would clearly assess organizations’ standing with
respect to their actual use of natural resources and electricity? What are the challenges of doing so when global organizations can
opportunistically move their operations to countries where controls to this end are lacking? Here, it is important that IS scholars
partner with fellow legal scholars to delve into local as well as global jurisprudence with the goal of advising policymakers in order
to incorporate Al into comprehensive international initiatives such as the Kyoto Protocol°® and the Paris Agreement.®’ We believe
that the IS community could effectively leverage institutional theories (Powell and DiMaggio 1991; Scott 2008) — already widely
applied in technology contexts (Currie 2009; Currie and Swanson 2009) and even used to support progress towards building and
implementing sustainable systems strategically (Butler 2011), to shed light on coercive, mimetic, and normative dynamics between
governments and organizations and within organizations.

In summary, IS scholars can contribute to solving problems concerning Al and the environment in several ways, spanning from
technical to more processual and policy-focused aspects of the issue at hand (cf. Sarker et al., 2019). It is possible to identify positive
aspects of Al concerning global warming. We therefore believe that it is already and will continue to be strategic for organizations to
generate business models aimed at leveraging Al capabilities to reduce greenhouse gas emissions, thereby offsetting AI’s demands for
electricity and natural resources. For instance, in a study involving 31 high-tech startups, Bottcher et al. (2024) found that sustainable
startups were able to leverage digital technologies to create ecological sustainable value propositions without compromising revenue
streams.

Being environmentally wise should be an ethical principle. In turn, marketing and reputation along with the possibility to pursue
sustainable business models should encourage organizations to employ Al systems in ways that account for environmental concerns.
Activists worldwide are already sensitive to environmental problems caused by Al (and associated technologies). For instance, when in
2023 it became official that Google planned to build a large data center in Uruguay, the Movement for a Sustainable Uruguay®?
(MOVUS) became extremely vocal in expressing concerns over potential exploitation of the country’s natural resources. Our com-
munity is increasingly becoming sensitive to ethical and societal issues, especially in the aftermath of the COVID-19 pandemic, when
the AIS decided to hold most conferences in hybrid mode, both so as to promote inclusiveness and to reduce the environmental impact
associated with travel (Ahuja 2024; Marabelli et al., 2023). In turn, we, as a community, cannot just watch what is happening with AI
and how our planet’s livability is increasingly compromised on a daily basis (in part, because of unethical use of AI). While Al can (and
will) positively affect the environment (as we outlined above), we need to make sure that the benefits of Al advances outweigh the
societal costs, which are distributed unevenly, often penalizing people in the Global South.

Conclusions

Al is nowadays associated with ethical concerns. Its negative effects on the environment are largely overlooked, but will
increasingly become relevant. Many factors contribute to global warming, not least humankind’s unethical behavior in using our

59 https://facctconference.org.

60 https://unfccc.int/kyoto_protocol.

61 https://unfccc.int/process-and-meetings/the-paris-agreement.
62 https://movusuruguay.blogspot.com.

12


https://facctconference.org
https://unfccc.int/kyoto_protocol
https://unfccc.int/process-and-meetings/the-paris-agreement
https://movusuruguay.blogspot.com

M. Marabelli and R.M. Davison Journal of Strategic Information Systems 34 (2025) 101921

planet’s resources. Al (so far) accounts for a small part of overall greenhouse gas emissions, the main source of global warming.
However, Al will likely become increasingly widespread and more resource hungry, especially because of the advent of GAI, which
needs nearly infinite datasets. The IS community has the moral obligation to conduct research and engage with practitioners and
policymakers regarding whether Al is and will be used ethically (or not) with respect to the environment. However, there are also many
benefits of AL It can be used strategically to reduce pollution from traffic in large urban areas (smart cities) and also to improve
weather forecasting. Nevertheless, it is our opinion that more regulations and global agreements to limit AI’s impact on global
warming are needed. Al's impact on global warming currently affects people and populations unevenly. Furthermore, we believe that
research should consider the indirect effects that Al can have on the environment, such as via web nudging. Ethical issues associated
with AI's effects on the environment, along with the strategic opportunities for organizations to use Al “for good”, represent a novel
research avenue for JSIS authors and readers and, more generally, for IS scholars engaged in topics at the intersection of technology,
ethics, and the health of our planet.
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ARTICLE INFO ABSTRACT

Handling Editor: Dr. S Charlebois Background: Addressing pressing global challenges such as climate change, resource depletion, and food inse-
curity necessitates innovative approaches to sustainable food design. Artificial intelligence (Al) is emerging as a
transformative technology with the potential to significantly enhance sustainability across the food system.
Scope and approach: This review comprehensively examines the integration of Al into sustainable food design. It
explores technological innovations including Al-driven precision farming, smart food processing, and the
development of alternative proteins. The paper further investigates AI's role in optimizing food supply chains
through predictive analytics and blockchain. Crucially, it also delves into the ethical considerations, environ-
mental and social impacts, and the evolving regulatory landscape surrounding Al in food systems, identifying
future prospects and inherent challenges.

Key findings and conclusions: Al offers profound capabilities to revolutionize food production, distribution, and
consumption, driving efficiency and reducing environmental footprints. However, realizing its full potential
hinges on addressing critical ethical concerns like algorithmic bias, data privacy, and social equity, alongside
mitigating AI’'s own environmental impact. A multi-stakeholder, collaborative approach, underpinned by robust
ethical frameworks and transparent policies, is imperative to ensure the responsible and equitable deployment of
Al ultimately fostering a resilient and sustainable global food system for future generations.

Keywords:

Algorithm ethics

Food system
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Smart agriculture
Responsible innovation

1. Introduction (Hotta et al., 2021). The sustainability of food systems and our capacity

to ensure adequate food and nutrition for present and future generations

The advent of artificial intelligence (AI) has heralded unprecedented
transformations across numerous sectors, including food design and
production. As we venture into an era characterized by rapid techno-
logical advancements, it is imperative to examine the intersection of Al,
ethics, and sustainability within the context of food systems. Food
consumption plays a pivotal role in the politics of sustainable con-
sumption and production due to its significant impact on the environ-
ment, individual and public health, social cohesion, and the economy

are threatened by population growth, climate change, resource deple-
tion, and pollution (Camaréna, 2020). The current agricultural and
supply chain systems significantly contribute to the issues at hand. To
transition to sustainable food systems that can support nearly 10 billion
people within the next 30 years, we need transformational change rather
than incremental adjustments.

Sustainable food design is an interdisciplinary approach that seeks to
create food systems capable of meeting the nutritional needs of current
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and future populations without compromising the health of the envi-
ronment, economic viability, and social equity (Gustafson et al., 2016).
This concept encompasses a holistic view of food production, process-
ing, distribution, consumption, and waste management. It aims to
integrate sustainable practices at every stage of the food chain to miti-
gate adverse environmental impacts, enhance food security, promote
public health, and foster social cohesion (Varzakas & Antoniadou,
2024). At its core, sustainable food design focuses on reducing resource
consumption, minimizing waste, and preserving biodiversity. Sustain-
able food design addresses the economic aspects by promoting fair trade,
supporting local economies, and ensuring equitable access to food re-
sources (McClements, 2020). The scope of sustainable food design ex-
tends to technological innovations, policy frameworks, and ethical
considerations.

The rapid advancements in Al offer transformative potential for
sustainable food design. Al technologies, including robotics, predictive
analytics, and machine learning (ML), are enhancing precision agricul-
ture by optimizing resource use and increasing crop yields (Gul &
Banday, 2024). Al can analyze vast amounts of data, Al can monitor crop
health, predict pest outbreaks, and provide tailored recommendations to
farmers, reducing environmental impact. Additionally, Al is revolu-
tionizing food processing and manufacturing through automation and
quality control, ensuring consistency and safety (Karanth et al., 2022).
In supply chain management, Al enhances transparency and trace-
ability, improving food safety and reducing waste. This integration of Al
within food systems directly contributes to the objectives of sustainable
food design by fostering resource efficiency, minimizing waste, and
enhancing overall system resilience.

However, the effective and equitable deployment of Al in food sys-
tems necessitates a strong emphasis on ethical considerations and sus-
tainability (Craigon et al., 2022). Ethical aspects such as fairness in
algorithms, safeguarding personal data, and ensuring equal access to
technological benefits are crucial to guarantee that Al advancements are
shared equitably and with clarity (Cumming et al., 2024) Moreover,
incorporating sustainable practices into the creation and deployment of
Al technologies is essential to ensure the enduring viability and strength
of food systems (Igbal et al., 2024). While existing literature extensively
discusses the individual aspects of Al in food systems and sustainable
food design, a critical gap remains in the comprehensive, integrated
analysis of their multifaceted relationship, particularly focusing on the
intricate ethical and sustainability implications of Al integration within
food systems. Previous works often address either the technological
advancements of Al or the principles of sustainable food systems in
isolation, or they touch upon ethical concerns without a deep, systemic
examination of their interplay with sustainability goals within this
specific domain. This review distinguishes itself by providing a holistic
examination of how Al not only drives sustainable food design but also
introduces novel ethical and sustainability challenges that demand
systematic consideration. Our work specifically bridges this gap by of-
fering a critical synthesis of current applications, while rigorously
scrutinizing the ethical pitfalls and long-term sustainability implica-
tions, thereby offering a more nuanced and integrated perspective. This
paper is structured as follows: it begins by providing a comprehensive
overview of sustainable food design principles and practices. Subse-
quently, it delves into the current applications and transformative po-
tential of Al across various stages of the food supply chain. Following
this, it critically examines the ethical considerations and sustainability
challenges associated with Al deployment in food systems. Finally, the
paper offers concluding remarks and outlines future research directions
in this critical area. Priority was given to peer-reviewed journal articles,
reputable conference proceedings, and authoritative review papers
published within the last decade, with a focus on interdisciplinary
research that directly addressed the intersection of Al, ethics, and sus-
tainability in food contexts.
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2. Technological innovations in sustainable food design

The convergence of advanced technologies and sustainable practices
is paving the way for transformative changes in food systems. As the
global demand for food continues to rise, driven by population growth
and changing dietary preferences, there is an urgent need for innovative
solutions that ensure food security while minimizing environmental
impact (Van Dijk et al., 2021). The present agricultural landscape de-
mands resilience, stability, and heightened productivity to address the
escalating needs posed by population growth, climate change, trans-
boundary pests, and crop diseases. Meeting these challenges is essential
to ensure a sustainable and secure food supply for current and future
generations. The application of Al in agriculture, also known as preci-
sion farming, has revolutionized traditional farming practices (Ghosh
et al., 2024, pp. 67-77). Al-powered tools and systems assist farmers in
making informed decisions, utilizing resources efficiently, and
improving crop productivity, with advancements in Al-based agriculture
and precision farming outlined in Table 1. By leveraging ML algorithms
and predictive analytics, precision farming can monitor soil health,
predict pest outbreaks, and provide real-time recommendations for
irrigation and fertilization (Elango et al., 2024). This not only boosts
productivity but also reduces the environmental footprint of agriculture
by minimizing water and chemical usage.

Technological advancements in food processing are crucial for
enhancing efficiency, ensuring quality, and reducing waste. Smart food
processing technologies, such as Al-powered robotics and computer
vision, streamline operations and maintain product consistency
(Jambrak et al., 2021). Fuzzy logic techniques have been used in the
food business for food modeling, control, and classification as well as for
solving food-related issues, they could analyze factors like temperature
fluctuations during transport, humidity, and ethylene levels to predict
the remaining shelf life of fruits and vegetables more accurately than
traditional methods (Mavani et al., 2021). These innovations enable
real-time monitoring and quality control, ensuring that food products
meet safety standards. Al-powered cucumber harvesting robots equip-
ped with advanced computer vision systems and sophisticated

Table 1
Technological innovations in Al-driven agriculture and precision farming.

Technological Description Benefits Reference

innovations

Al driven Integration of Al for Enhanced efficiency Potluri
management data collection, and precision in et al.
system analysis and decision resource utilization. (2024)

making in crop health
and management.

Crop monitoring Use of Al to monitor Increase crop Naresh
and crop health, predict productivity and et al.
management harvest and optimize reduce environmental (2020)

input like fertilizers impacts.
and pesticides.

Deep learning Control pest Early detection and Benos
for pest infestation. control of pests, et al.
management minimizing crop (2021)

losses.

Data collection Collect data on light, Comprehensive George
devices temperature, environmental et al.

humidity, rainfall and monitoring for (2020)
fertilizer optimal growth
concentrations. conditions.

Satellites and Real time monitoring Improved accuracy in Dagur
imagery of agriculture lands. crop health et al.
drones assessment and (2024)

resource allocation.

Predictive Potential issues like Proactive Linaza
analysis pest outbreaks and management and et al.

abiotic stress factors. mitigation of risk. (2021)

Optimization of Optimize the use of Reduced waste and Sharma

resources water, pesticides and enhance et al.
fertilizers sustainability. (2020)
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hardware, including autonomous vehicles, manipulators, and
end-effectors, have been engineered (Nath et al., 2024). These innova-
tive robotic systems possess the capability to accurately detect and
image the ripeness of cucumbers, thus enhancing the efficiency and
precision of the harvesting process. Additionally, Al-driven predictive
maintenance can prevent equipment failures and reduce downtime.
Innovations in waste reduction, including the use of Al to predict and
manage food surplus, contribute to more sustainable food systems by
minimizing waste at every stage of the supply chain (Kumar et al.,
2021). As concerns over the environmental impact of conventional an-
imal agriculture grow, alternative protein sources such as plant-based
and cultured meats offer promising solutions. The development of
alternative proteins and lab-grown foods represents a significant leap
toward sustainable food systems (De Oliveira Padilha et al., 2022) These
innovations not only reduce the reliance on resource-intensive livestock
farming but also address issues related to animal welfare and food se-
curity. Al plays a critical role in optimizing the production processes of
these alternative proteins, from formulation to manufacturing, ensuring
that they are both sustainable and scalable (Nikkhah et al., 2023). The
application of Al in food industry in discussed in Table 2. The significant
advancements in Al application across agriculture, food processing,
alternative proteins, and waste reduction highlight its overarching po-
tential to enhance efficiency and sustainability within food systems.
These diverse applications collectively underscore how Al is not merely
optimizing individual stages but is also poised to revolutionize the entire
food supply chain, a topic further explored in the subsequent section.

3. Al in food supply chain optimization

The efficient and sustainable delivery of food from producers to
consumers hinges on the optimization of food supply chains (Anwar
et al, 2023). Al offers transformative capabilities in this domain,
encompassing predictive analytics for demand and supply management,
blockchain for transparency and traceability, and Al-powered logistics
and distribution efficiency (Abaku et al., 2024). These integrated tech-
nologies are crucial for enhancing the resilience, responsiveness, and
sustainability of modern food supply chains, thereby directly contrib-
uting to the broader goals of sustainable food design discussed previ-
ously. Al-driven predictive analytics plays a pivotal role in managing the

Table 2
Application of Al in food industry.
Food industries Application AT used Reference
Dairy Controlling the Fuzzy logic and Negash et al.
spoilage of milk artificial neural network ~ (2018)
Lactose removal Balieiro
from the milk et al. (2016)

Soft drink and Nutrient content of Convolutional neural Hafiz et al.
beverage the beverages network (2020)

Fruit and Sorting, grading of Feed forward neural Zhang et al.
vegetable vegetables and yield  networks and (2016)

assessment photometric camera Patil et al.
(2021)
Food packaging ~ Cost management ML and robotics U. Ahmad
and packaging et al. (2022)
design

New product Formulations and Al based astrograph Taneja et al.
development grocery delivery system (2023)

Food Detection of food Artificial neural Meng et al.
adulteration adulterants network, deep learning (2022)
detection and stratified cross Zhang et al.

validation. (2022)
Cardoso and
Poppi
(2021)

Quality control Chemical Artificial neural Nath et al.
and food composition, network (2024)
image phenolic and

flavonoid
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dynamic nature of food supply and demand (Elufioye et al., 2024). By
analyzing vast datasets from various sources such as historical sales,
market trends, weather patterns, and consumer behavior, Al algorithms
can forecast demand with high accuracy (Zong & Guan, 2024). These
precise predictions enable producers, distributors, and retailers to make
informed decisions regarding inventory management, production plan-
ning, and resource allocation (Zatsu et al., 2024). The immediate ben-
efits include minimized food wastage due to overproduction or spoilage,
reduced stockouts that disrupt consumer access, and an overall
improvement in supply chain efficiency. The ability to anticipate fluc-
tuations in demand also allows for better coordination and timely ad-
justments, ensuring that food reaches consumers when and where it is
needed most, aligning with the principles of food security and resource
optimization. Transparency and traceability are essential components of
a sustainable food supply chain, fostering trust and accountability (Khan
et al., 2020). While blockchain technology itself creates a decentralized
and immutable ledger of transactions, ensuring that every step in the
supply chain is recorded and verifiable (Raparthi et al., 2021), the
integration of Al significantly enhances this capability AI's role is not
merely to facilitate a blockchain system but to elevate its utility. Al al-
gorithms analyze the vast amount of data stored on the blockchain for
anomalies, potential fraud, and inefficiencies that might not be imme-
diately apparent through raw ledger entries. This intelligent analysis
allows for a more proactive and comprehensive understanding of the
supply chain. The combined use of blockchain and AI facilitates
end-to-end traceability, enabling stakeholders to track the origin,
journey, and quality of food products with unprecedented detail
(Tsolakis et al., 2022). The silent feature of blockchain technology for
supply chain is given in Table 3 blockchain provides the secure, trans-
parent, and immutable foundation for data recording. Al then acts as an
intelligent layer on top of this foundation, extracting deeper insights,
enabling more sophisticated automation, and improving overall system
efficiency. They are complementary technologies, but not mutually
dependent for basic functionality. This enhanced transparency em-
powers consumers with increased confidence in food safety and
authenticity, while producers and retailers can swiftly address any issues
related to contamination or recalls, mitigating risks and ensuring
product integrity (Dedeoglu et al., 2023). Therefore, Al acts as an
intelligent layer on top of blockchain, transforming raw data into
actionable insights for improved traceability and transparency. The lo-
gistics and distribution segments of the food supply chain are critical for
ensuring timely and cost-effective delivery of products. Al-powered
systems optimize these processes by using real-time data and ML algo-
rithms to enhance route planning, fleet management, and warehouse
operations. For instance, Al can dynamically adjust delivery routes
based on traffic conditions, weather forecasts, and delivery schedules,
significantly reducing fuel consumption and transit times, which
directly lowers the environmental footprint. In warehouses, Al-driven
robotics and automation streamline sorting, packing, and inventory
management, increasing throughput and accuracy. These advancements
contribute to reduced operational costs, lower environmental impact,
and improved service levels. The integration of Al technologies in food
supply chain optimization presents significant opportunities for
enhancing efficiency, sustainability, and transparency. Predictive ana-
lytics, blockchain, and Al-powered logistics collectively enable a
responsive and resilient supply chain capable of meeting the growing
demands of a global population. By leveraging these innovations,
stakeholders can build a food system that is both economically viable
and environmentally responsible, directly contributing to the over-
arching goals of sustainable food design. This seamless integration of Al
throughout the food supply chain is a critical step towards achieving a
truly sustainable global food system.

4. Ethical considerations in Al-driven food systems

Food security is a multifaceted issue encompassing the availability,
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Table 3
Key features of blockchain technology for enhancing food supply chain
efficiency.
Features Descriptions Benefits for food supply
chain optimizations
Transparency All interaction between Enhanced visibility and trust
supply chain stakeholdersis ~ among stakeholders; easy
managed by the blockchain,  tracking of food products.
offering visibility to all
involved parties.
Immutability The write once ledger Ensure data integrity and
prevents any modification reliability; prevents fraud
of stored data. and tempering in food supply
chain
Timestamped All transaction is recorded Accurate tracking of product
transactions with timestamps, allowing history and timeline;
verification of the order of improves accountability.
events.
Robustness Many nodes collectively Maintain operation
manage operations, continuity; ensure reliability
ensuring system stability of the supply chain network.
even if some nodes fail.
Decentralized Digital operations are Increase system resilience;
control managed by distributed eliminates single point of
nodes, without a single failures.
controlling nodes entity.
Improved privacy Privacy preserving Safeguard propriety

mechanisms protect information; enhances
sensitive data from

competitors.

stakeholder confidence in
data security.

Automation Smart contracts execute Streamline processes, reduce
through smart within the blockchain manual interventions ensure
contracts network, automating transparency in transaction

operation like payment executions.
transfers.

Al powdered Al analyses data to forecast ~ Reduces food wastage;
predictive demand and supply improve supply chain
analysis optimizing inventory and efficiency; match supply with

resource allocations. demand accurately.

Blockchain Blockchain records Enhances food safety and
enhanced location, quality and quality control increases
traceability certification information consumer confidence in

ensuring product
traceability.

Al optimizes route plaining
and fleet management
enhancing logistics
efficiency.

product origin

Al driven logistic
and distribution

Reduce transportation cost;
minimize environmental
impact ensures timely
delivery.

access, utilization, and stability of food systems. Al-driven food systems
have the potential to address these challenges by optimizing agricultural
practices, improving supply chain efficiencies, and enhancing food dis-
tribution networks (Ahmad et al., 2024). However, the integration of Al
must be approached with critical ethical considerations to ensure
equitable access to food resources and avoid exacerbating existing
inequalities.

The ethical implications of AI in food systems are complex and
manifest at various stages of design, application, and outcome. One of
the most critical aspects is algorithmic bias, which can stem from
incomplete, unrepresentative, or skewed datasets used to train Al
models (Belenguer, 2022). For instance, an Al algorithm designed to
optimize food distribution might inadvertently prioritize areas with
more readily available historical data (e.g., urban centers) over
marginalized rural communities, leading to unfair resource allocation
(Mayuravaani et al, 2024). Similarly, AI in agricultural
decision-making, such as predicting optimal fertilizer use or crop yields,
could be biased if trained predominantly on data from large-scale,
technologically advanced farms, thus failing to accurately serve the
needs of smallholder farmers or diverse agricultural practices
(McLennon et al., 2021). This bias can lead to unequal outcomes, where
technological benefits disproportionately favor certain groups,
compromising the goal of equitable food security (Siddiqui, 2024).
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Addressing this requires a comprehensive approach, including meticu-
lous data curation to ensure diversity, the development of robust data
auditing mechanisms, and the promotion of diverse and inclusive
development teams to mitigate inherent human biases in algorithm
design. Beyond bias, ethical concerns also vary with different types of Al
applications:

e Predictive Analytics and Machine Learning: While powerful for
early detection of disease outbreaks, risk prediction, and monitoring
of foodborne pathogens (Qian et al., 2022), these systems heavily
rely on vast amounts of data, raising significant data privacy and
security concerns. The collection and analysis of consumer data, for
instance, necessitates strict adherence to regulations like GDPR
(European Union, 2018) and the implementation of robust cyberse-
curity measures to maintain consumer trust. The potential for misuse
or unauthorized access to sensitive agricultural or consumer data is a
critical ethical challenge.
Robotics and Automation: Al-powered robotics in harvesting (Nath
et al., 2024) or smart processing facilities (Jambrak et al., 2021)
introduce ethical questions related to job displacement and the need
for just transition strategies for agricultural laborers. While
increasing efficiency, the social impact on livelihoods must be
carefully managed to prevent exacerbating socio-economic dispar-
ities within the food system.

e Computer Vision and IoT: These technologies, used for monitoring
crop health or predicting shelf life (Mavani et al., 2021), generate
vast quantities of data. The ownership and control of this data
become critical ethical issues, particularly for farmers who may find
their proprietary information used by larger corporations without
equitable benefit or consent.

Central to mitigating these ethical challenges is the establishment of
robust accountability and transparency frameworks. Accountability,
conceptualized as a policy framework encompassing principles of trust,
inclusivity, transparency, and verification (Kraak et al., 2014), ensures
that stakeholders are held responsible for the design, deployment, and
outcomes of Al systems. This includes clear lines of responsibility for Al
failures or biased outputs. Transparency in data practices, coupled with
explainable Al models, is crucial for fostering trust among consumers,
farmers, and industry stakeholders. While proprietary information must
be protected, a balance is needed to ensure that the logic and
decision-making processes of Al systems are understandable, allowing
for scrutiny and correction. Enhancing supply chain transparency, for
example, necessitates reducing information asymmetry and promoting
less opaque decision-making processes, particularly where algorithmic
bias could privilege one group over another (Manning et al., 2022). Al
holds immense promise for enhancing food safety and security, its
deployment must be rigorously guided by ethical principles. Addressing
bias in design, considering the varying ethical issues across different Al
applications, and establishing strong frameworks for data privacy,
accountability, and transparency are paramount. Critically examining
and mitigating these ethical challenges is essential to ensure that
Al-driven food systems contribute to a more secure, equitable, and
sustainable food future for all. The pervasive issue of bias, in particular,
warrants continued investigation and proactive mitigation strategies in
future research endeavors.

The successful integration of Al into food systems is fundamentally
tied to addressing complex ethical considerations, particularly con-
cerning bias, data privacy, and accountability. These ethical consider-
ations directly underpin the broader environmental and social impact of
Al in food design. While Al offers immense potential for enhancing
sustainability and efficiency, its deployment also carries significant
implications for ecological well-being and social equity, which must be
proactively managed to achieve genuinely sustainable food systems.
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5. Environmental and social impact of Al in food design

The environmental impact of Al in food design is a dual-edged sword.
On one hand, Al offers powerful tools for minimizing the environmental
footprint of food production and consumption. Precision agriculture,
powered by Al, optimizes resource use by precisely managing irrigation,
fertilizers, and pesticides, thereby reducing water consumption, chem-
ical runoff, and greenhouse gas emissions. This directly contributes to a
reduced Ecological Footprint (EFP) in life cycle analysis, encompassing a
broad spectrum of products and services, thereby representing the
ecological assets required by a community and the natural resources
utilized for the production of essential goods and services, as well as for
the absorption or disposal of waste and by-products. In the context of
global warming and anthropogenic emissions, EFP—encompassing all
components such as water and biodiversity—serves as a key indicator of
greenhouse gas emissions associated with the production of goods and
services (Wick & Tkacz, 2013). When converted to carbon equivalent,
the EFP provides a comprehensive measure of environmental impact
across the entire life cycle of a product or service. The Carbon Footprint,
a consolidated numerical value encompassing components like Land
Footprint, Water Footprint, Biodiversity Footprint, Resource Footprint,
and Food Footprint, is extensively used to identify mitigation and
adaptation strategies for global climate change (Lal, 2022). Agriculture
and the food system constitute a large component of the total carbon
footprint, especially in developing countries like India, China, Japan,
and South Korea, highlighting the urgency of reduction strategies (Fig. 1
outlines five pillars for Carbon Footprint reduction). Al has the potential
to significantly reduce the carbon footprint of food systems by opti-
mizing various stages. By streamlining supply chains, Al can minimize
transportation emissions and improve resource allocation Precision
agriculture, powered by Al, enables farmers to make data-driven de-
cisions that enhance productivity while reducing environmental impact
(Blasch et al., 2020). Al-driven tools can predict optimal growth con-
ditions, monitor plant health, and detect pests and diseases, leading to
more efficient use of resources and lower emissions (Pathan et al.,
2020). Furthermore, advancements in automation, such as harvesting
robots and food processing robots, enhance environmental sustainabil-
ity by reducing food waste, a significant environmental challenge (Van
Der Burg et al., 2022). Beyond production and processing, sustainable
packaging solutions are crucial for reducing the environmental impact
of food. Innovations like biodegradable, compostable, and edible pack-
aging offer alternatives to traditional plastics (Sokka et al., 2024).

End waste

Sequester Use electricity
carbon Carbon foot wisely
print
Adopt bicenergy
Use hydrogen for circular
economy

Fig. 1. Pillars to reduce Carbon Footprint.
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Innovations in packaging technology, such as biodegradable and com-
postable materials, offer alternatives to traditional plastics. Edible
packaging, made from natural, plant-based sources, can be consumed or
biodegraded rapidly, reducing waste. Smart tags, a term introduced by
researchers, denote a unique integration of intelligent packaging tech-
nologies, characterized by visible electronic markers equipped with
environmental sensing capabilities and augmented by software intelli-
gence (Htun et al., 2023). These tags incorporate machine vision, user
information, and location tracking, facilitating real-time monitoring and
enhanced communication within the supply chain. Smart labels,
equipped with sensors, can monitor product conditions in real-time,
ensuring freshness and reducing food waste (Gligoric et al., 2019).
These technologies not only enhance product safety but also contribute
to a greener future. However, the development and operation of Al
systems themselves have an environmental cost. The massive compu-
tational power required for training and running complex AI models
consumes substantial energy, often derived from fossil fuels, contrib-
uting to carbon emissions. Data centers, which house Al infrastructure,
also require significant water for cooling and generate electronic waste
from discarded hardware (United Nations Environment Programme,
2024). While the environmental benefits of Al applications in food
systems are often emphasized, it is crucial to conduct life cycle assess-
ments of Al technologies to ensure that the environmental benefits
outweigh their operational footprint. This demands a focus on devel-
oping energy-efficient Al algorithms and hardware, promoting renew-
able energy sources for data centers, and establishing responsible
e-waste management practices.

Concurrently, the social impact of Al in food design is profound and
requires careful attention, building upon the ethical issues discussed
previously. The social acceptance and public perception of Al in food
design are influenced by various factors. While Al offers numerous
benefits, such as improved efficiency and sustainability, concerns about
job displacement and data privacy remain prevalent. Public education
and transparent communication about the benefits and limitations of Al
can help build trust and acceptance. Engaging stakeholders in the
development and implementation of Al technologies can also foster a
positive perception and ensure that Al solutions are aligned with societal
values and needs. The ethical issue of algorithmic bias, as discussed, can
have direct social consequences, potentially exacerbating existing in-
equalities in food access or resource allocation if not properly addressed
through diverse development teams, transparent Al practices, and
continuous auditing. Al has the potential to revolutionize food systems
by significantly reducing carbon footprints, enhancing packaging sus-
tainability, contributing to a greener future. Simultaneously, it holds the
key to improving public perception through education and engagement,
fostering social acceptance. (Zatsu et al., 2024). Al continues to evolve,
it is essential to proactively address both its environmental footprint and
its social challenges to ensure a sustainable and equitable future for all.
Recognizing these complex interdependencies, the next section will
explore the regulatory and policy landscape necessary to guide the
responsible development and deployment of Al in food design, ensuring
its benefits are maximized while mitigating its risks for both the envi-
ronment and society.

6. Regulatory and policy landscape

The integration of Al in food production is subject to a growing body
of global regulations aimed at ensuring safety, quality, and ethical
standards. Regulatory bodies such as the Food and Drug Administration
in the United States and the European Food Safety Authority in Europe
have established guidelines that food companies must adhere to when
employing Al technologies. These regulations address various aspects,
including data privacy, cybersecurity, and product liability, to mitigate
risks associated with Al applications in the food industry. Ethical Al
frameworks are paramount for guiding the responsible development and
deployment of AI technologies within the food industry, emphasizing
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principles such as transparency, accountability, fairness, and human
oversight. For instance, the European Union’s AI Act mandates clear
communication regarding Al system capabilities and limitations,
ensuring user awareness during Al interactions. Moreover, these
frameworks advocate for inclusive Al development processes to prevent
biases and discrimination. The Engineering and Physical Sciences
Research Council’s Framework for Responsible Innovation, which em-
ploys anticipation, reflection, engagement, and action, offers a struc-
tured methodology for evaluating the ethical implications and practical
applications of AL This approach was utilized to conceptualize a
fictional data trust leveraging Al for data sharing and decision-making
within the food supply chain (Craigon et al., 2022), demonstrating
how stakeholder engagement and diverse perspectives can lead to
ethically sound and practically viable AI solutions.

Governments and institutions play a pivotal role in shaping the
regulatory environment for Al in the food industry. Initiatives like the
India AI Mission are dedicated to establishing a robust Al ecosystem
founded on principles of safe and trusted Al (Choudhary et al., 2024).
These efforts include the development of indigenous tools for bias
mitigation, algorithm auditing, and ethical certifications. By fostering
collaboration among stakeholders and implementing comprehensive
regulatory frameworks, governments can ensure the responsible devel-
opment and utilization of Al technologies for societal benefit.

While global efforts are underway, the regulatory and policy land-
scape specifically within Sri Lanka regarding Al in food production re-
mains nascent. The Sri Lanka Association for Artificial Intelligence,
primarily functioning as an Al research group, is actively involved in
promoting public awareness, enhancing Al education and research, and
fostering industry-academia collaborations for real-world Al applica-
tions (Chamara et al., 2020). The Sri Lanka Association for Artificial
Intelligences activities, including promotional programs, short courses,
research promotion, and an annual Al conference, are crucial for
building foundational knowledge and capacity. However, the current
focus is predominantly on research and advocacy rather than the direct
formulation and implementation of specific regulatory policies govern-
ing AI in the food sector. This highlights a significant gap in the Sri
Lankan context, where the transition from general Al promotion to
sector-specific regulation for food production is yet to be fully realized.
This necessitates further development of national policies and frame-
works to ensure the safe, ethical, and transparent adoption of Al within
Sri Lanka’s food industry, aligning with international best practices and
safeguarding consumer interests. The preceding discussion underscores
the nascent stage of regulatory development for Al in Sri Lanka’s food
sector, contrasting with more established global frameworks. This gap
presents both significant challenges and opportunities as the nation
looks towards the future. The future integration of Al in food production
hinges on addressing several critical aspects, ranging from policy
formulation to technological infrastructure and human capital
development.

7. Future prospects and challenges

The integration of Al in the food industry is a transformative force,
fundamentally reshaping sustainable food innovation. This paradigm
shift is evident in the emergence of precision fermentation, an
advancement made possible by the convergence of Al, bioinformatics,
and computational biology. Al technologies are enabling the develop-
ment of hyper-personalized meals, eco-conscious consumption, and real-
time consumer data analysis. These innovations are reshaping the food
and beverage sector, allowing companies to identify trends, test new
concepts, and bring products to market more rapidly than ever before.
Key drivers of this transformation include the need for personalized
experiences, the use of technology to enhance food interactions, and a
growing focus on eco-friendly practices. Al is also being utilized to
create faster, more personalized, and sustainable products by analyzing
vast amounts of consumer data and gaining real-time insights into
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changing preferences.

The advent of "Food Industry 4.0" breakthroughs has paved the way
for novel food product development. Industry 4.0 represents a multi-
faceted paradigm that seamlessly integrates physical, digital, and bio-
logical realms (Hassoun et al., 2022). Within the agriculture and food
sectors, this framework leverages cutting-edge technologies such as Al,
the Internet of Things, advanced smart sensors, robotics, and innovative
3D printing methods. These synergistic technologies collectively
modernize and enhance agricultural practices and food production,
contributing to a more efficient, sustainable, and responsive industry. A
prime example of sustainable strategies within this context is enzymatic
hydrolysis, which offers a promising avenue for recovering value-added
compounds from food waste and by-products (Hassoun et al., 2022,
Bekhit, et al., 2022). These Industry 4.0 technologies collectively facil-
itate the modernization and enhancement of agricultural practices and
food production, contributing to a more efficient, sustainable, and
responsive industry. Emerging trends in food industry is given in Fig. 2.

Beyond process optimization, Al is instrumental in developing new
food ingredients and products. Wang et al. (2022) reported that algae
could be a functional ingredient which has high amounts of essential
amino acids. These algae can be an alternative source of protein rather
than the traditional available sources. Davies et al. (2021) reported that
ML can develop the information regarding the nutritional composition
of the packed foods. Furthermore, 3D printing offers significant poten-
tial to reduce carbon foot print and minimize raw materials useage in
food production. Portanguen et al. (2019) stated that textured and
appealing meat products can be produced which have high nutrition
values and convenient for people. Despite the numerous benefits, the
application of Al in food design is not without challenges.

A primary concern is the potential for inherent bias in Al algorithms,
which can lead to unintended and potentially inequitable consequences
in food production and distribution. For instance, if training data for an
Al system reflects existing dietary biases or socioeconomic disparities,
the AI might perpetuate or even amplify these issues in its recommen-
dations or optimized processes. The increasing reliance on Al technology
also raises critical questions regarding data privacy and security, given
the sensitive nature of consumer preferences and supply chain data. The
intrinsic complexity of many Al systems can further result in a lack of
transparency, making it difficult for stakeholders to comprehend and
trust the decision-making processes. This "black box" phenomenon can
hinder accountability and ethical oversight. Moreover, the ethical im-
plications of Al in food design extend to potential labor displacement,
particularly impacting small-scale farmers and producers who may
struggle to adapt to Al-driven automation without adequate support and
policy interventions. The socio-economic impacts on these vulnerable
groups warrant careful consideration to ensure that Al adoption benefits
all stakeholders within the food system.

Alternative

Functional foods imes
pruh:ms

3D food printing

Precision

Calfurad meat fermentation

Waste utilization

Personalized
nutrition

Fig. 2. Emerging trends in food industry.
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To realize the full potential of Al in the food industry, it is essential to
develop a comprehensive roadmap is essential, one that meticulously
addresses both sustainability and ethical considerations. This roadmap
should prioritize the development of transparent and unbiased Al al-
gorithms, ensuring that Al-driven solutions are equitable and inclusive.
This means not only technical solutions for bias detection and mitigation
but also diverse representation in Al development teams. Investment in
robust education and training programs is crucial to equip all stake-
holders, from farmers to food scientists and policymakers, with the
necessary skills to effectively implement and manage Al technologies.
Additionally, collaboration between governments, industry, and
academia is vital to establish regulatory frameworks that promote the
ethical use of Al in food systems. By fostering innovation while safe-
guarding ethical standards, it is possible to create a sustainable and
resilient Al-driven food system that delivers equitable benefits to all
members of society.

8. Conclusion

The integration of Al into sustainable food design represents a
pivotal frontier in addressing some of the most pressing global chal-
lenges of our time, including climate change, resource depletion, and
pervasive food insecurity. As this review has demonstrated, AI’s trans-
formative potential extends across various facets of the food system,
from enabling hyper-precision agriculture that minimizes waste and
optimizes resource allocation to streamlining complex supply chains for
enhanced efficiency and reduced environmental footprint. Furthermore,
Al is a catalyst for disruptive innovations such as the advancement of
lab-grown foods and the development of intelligent, sustainable pack-
aging solutions. These technological leaps are poised to revolutionize
food production, distribution, and consumption patterns, moving us
towards a more resilient and environmentally benign food system.
However, this technological paradigm shift is not without its complex-
ities and inherent risks. For Al to truly serve as a force for good in sus-
tainable food design, its deployment must be meticulously guided by
robust ethical frameworks and inclusive policy instruments. As high-
lighted, critical concerns such as algorithmic bias, potential privacy
breaches of sensitive consumer and agricultural data, and the exacer-
bation of social inequities demand proactive and comprehensive miti-
gation strategies. The environmental footprint of Al itself, encompassing
energy consumption for data centers and hardware manufacturing, also
necessitates careful consideration within the broader sustainability
discourse. Moreover, the socio-economic impacts, particularly the po-
tential for labor displacement within traditional agricultural and food
processing sectors, underscore the imperative for just transition strate-
gies and continuous workforce upskilling. Ensuring the successful and
equitable integration of Al in food systems hinges on core principles of
transparency, accountability, and meaningful public engagement.
Stakeholders, from policymakers and industry leaders to farmers and
consumers, must have a clear understanding of AI's capabilities, limi-
tations, and decision-making processes. As the regulatory landscape
continues to evolve globally, a concerted effort towards international
collaboration will be absolutely essential to harmonize standards, share
best practices, and foster responsible AI adoption that transcends na-
tional borders.

Looking ahead, the trajectory of sustainable food design is funda-
mentally intertwined with our ability to judiciously balance rapid
technological advancements with unwavering ethical considerations.
The imperative is to foster continuous innovation while simultaneously
safeguarding planetary health and promoting social equity. This ambi-
tious vision necessitates a multi-stakeholder, collaborative approach
that brings together governments, industry, academia, and civil society.
Only through such unified efforts can we effectively navigate the com-
plexities of Al integration, harness its immense potential, and ultimately
realize a sustainable, Al-driven food system capable of meeting the
nutritional needs and environmental responsibilities of both present and
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future generations. The challenges are significant, but the potential re-
wards of a truly optimized, sustainable, and equitable global food sys-
tem, powered by responsible Al, are profound and achievable through
concerted action.
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The urgency of addressing climate change and achieving a just transition to
sustainability has never been greater, as the world approaches critical environmental
thresholds. While artificial intelligence (Al) presents both opportunities and challenges
in this context, its role in organizational decision-making and expertise remains
underexplored. This paper examines the interplay between Al and human expertise
within organizations, focusing on how Al can complement or substitute traditional
expertise across factual, temporal, and social dimensions. Drawing on Social
Systems Theory, we argue that while Al excels in data processing and rapid decision-
making, it falls short in contextual adaptation, long-term strategic thinking, and
social legitimacy—areas where human expertise remains indispensable. And this
is, we observe, particularly evident in problems connected with climate change
and sustainability more broadly, where the tensions for organizational decision-
making -and governance become even denser as much in the factual, temporal
and social dimensions, making them into very complex, ‘super-wicked’, problem
situations. Thus, there is a need to think more in detail about possible hybrid
approaches, integrating Al's computational strengths with human interpretive
and adaptive capabilities, which may offer promising pathways for advancing
organizational decision-making in the overly complex, wicked decision-making
scenarios characteristic of just transitions. However, this requires careful consideration
of power dynamics, trust-building, and the ethical implications of Al adoption. By
moving beyond techno-optimism, this study highlights the need for a nuanced
understanding of Al's functional and social plausibility in organizational settings,
offering insights for fostering equitable and sustainable transitions in an increasingly
complex world.

KEYWORDS

intelligence, expertise, organizations, just transitions, complexity, science-policy,
interface

Introduction

With the world on the verge of surpassing the 1.5°C threshold set by the Paris Agreement
and exceeding multiple planetary boundaries, the urgency of transitioning to sustainable
development has never been greater. While past efforts have been insufficient, a profound
transformation in production, consumption, and societal organization is imperative to achieve
carbon neutrality and environmental sustainability.
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Yet, sustainability is not merely about reducing emissions and
pollution; it must also be just and inclusive. A just transition ensures
that the burdens and benefits of change are equitably distributed,
leaving no one behind. In this context, artificial intelligence (AI)
emerges as both a potential catalyst and a challenge. On one hand, AI
offers new efliciencies in production, energy management, and
resource tracking, but on the other, its ecological footprint and
disruptive effects on employment raise pressing concerns. Al itself is
a driver of transition, particularly in reshaping labor and decision-
making structures, making it crucial to examine how this shift can
be made equitable.

The rapid evolution of Al—outpacing regulatory capacities—has
fueled both optimism and anxiety. While some view it as a
technological leap toward a better future, others warn of unregulated
risks. The 2024 “Global Digital Compact,” established at the UN
Summit for the Future in New York, represents an initial effort to
harness AT’s potential while mitigating its threats in the pursuit of
sustainability and equity.

However, meaningful action requires moving beyond hype to a
deeper understanding of AT’s real impact on society and the conditions
for a just transition. Much of the existing literature focuses on AT’s
technical dimensions, often neglecting the broader socio-technical
dynamics at play. Transformative shifts—particularly those that
redefine production, consumption, and development paradigms—
cannot be understood solely as technological processes. They are
embedded within complex networks of science, regulation, industry,
economics, and social expectations, unfolding through gradual, multi-
scalar, and non-linear dynamics.' In this sense, promoting a just
transition—as well as tackling climate change and sustainability more
generally- is at its core a matter of decision-making and governance
(Agrawal et al., 2022; Underdal, 2010; Billi et al., 2021). And in
modern society, a good part of decision-making and governance is
made in, through or between organizations (Luhmann, 2018; Willke,
2006) so that understanding if and how AI development can impact—
positively or negatively—organizational decision-making is very
relevant for the research o just, sustainable and zero-carbon transitions.

This paper contributes to this discussion by examining the
relationship between AI and expertise within organizations and
reflecting on the implications—opportunities and challenges—it can
bring to decision-making relating to climate change and sustainability.
We argue that understanding expertise’s historical de-humanization
within organizations is key to assessing AT’s role in a just transition.
Using Social Systems Theory, we provide a sociological and historical
perspective to counter the oversimplifications often present in Al
debates, particularly the tendency to “over-humanize” both
organizations and Al itself. Then, we look at how sustainability
challenges may require rethinking the dichotomy between AI and
human expertise, moving towards more ‘hybrid’ approaches and thus

1 Admittedly, these kind of considerations have a much broader application
than sustainability or climate change issues. Readers may find these arguments
interesting also for other topics of research. However, in this paper we decided
to focus on this particular framing as questions of IA and expertise in
organization and decision-making tend not to be sufficiently considered in
sustainability and climate change literature, and we believe our approach may

provide useful insights for this field, as is discussed at length below.
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pushing forward the need of more research on how to design and

implement  effective and just forms of human-AI
expertise hybridization.

The paper is structured as follows: Section II reviews dominant
theories on technological singularity and AT’s impact on expertise
within organizations. Section III draws on Social Systems Theory to
contextualize the evolution of expertise and the pressures toward its
de-humanization, while Section IV explores whether AI can
functionally replace expertise in organizations, identifying its limits.
With this theoretical background, Section V turns to the central
question: what are AT’s opportunities and challenges in fostering a just
transition to sustainability? Finally, Section VI offers concluding

reflections and directions for future research.

Artificial intelligence, expertise and
organizational decision-making: a
brief summary

The term Artificial Intelligence broadly encompasses various
technologies, though most current applications revolve around
machine learning—algorithms that refine performance through
exposure to data without explicit programming. Since the 1950s, AI
development has oscillated between phases of optimism (“Al springs”)
and stagnation (“Al winters”), constrained by computing power, labor-
intensive data preparation, and the brittleness of early systems
(Schraagen and van Diggelen, 2021). A turning point arrived in the
2010s with big data and deep learning, which allowed neural networks
to autonomously process vast datasets, reducing human intervention
while introducing new challenges such as data dependence and
opaque decision-making mechanisms (Jiang et al., 2022).

This progress has fueled a resurgence of speculation about AT’s
long-term trajectory, including debates over superintelligence and
technological singularity (Kriiger, 2021). Perspectives vary widely:
skeptics argue that Al's advancement is overhyped and that true
singularity remains a distant or unattainable goal, while proponents—
including transhumanists—view it as an imminent and beneficial
breakthrough. Meanwhile, critics warn of potential risks, ranging
from job displacement to existential threats (Hoffmann, 2023).
Although some foresee rapid progress, others highlight persistent
limitations such as the finite availability of high-quality data and the
growing computational costs of scaling AT models (Walsh, 2017).

ATs role in decision-making has evolved in parallel. The first
significant applications emerged in the 1980s with expert systems,
which sought to encode human knowledge into structured AI models.
These systems, however, proved limited in their application, leading
to the refinement of knowledge-based systems and, later, the
resurgence of Al-driven decision-making through deep learning
(Duan et al,, 2019). Despite these advances, concerns persist over AT’s
capacity to replace human labor and the risks associated with
autonomous decision-making, particularly in high-stakes areas such
as healthcare, security, and governance (Pilling and Coulton, 2019).

In response, contemporary approaches increasingly emphasize
hybrid models that integrate human expertise with Al capabilities.
Many organizational decisions involve uncertainty, complexity, and
ethical considerations, where AT’s analytical strengths can complement
human intuition, experience, and contextual understanding (Trunk
etal., 2020). This shift aligns with a broader redefinition of expertise,
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moving beyond static domain-specific knowledge to incorporate
adaptive intelligence, intuitive reasoning, and interdisciplinary
competencies (Carbonell and Dailey-Hebert, 2021).

Consequently, scholars and practitioners increasingly advocate for
Al-human hybridization that acknowledges elements of singularity
debates while preserving the unique strengths of human intelligence.
As with past waves of automation, AI may not eliminate jobs outright
but rather transform labor markets, reshaping the nature of expertise
and the skills required for emerging roles (Jarrahi, 2018). While AT’s
impact remains uncertain, its integration into organizational decision-
making suggests a shift not toward full automation but toward
redefining human labor and intelligence in an evolving technological
landscape (Labrana and Bill, 2015).

Organizations as social systems and
the role of expertise

Niklas Luhmann’s Social Systems Theory offers a sociological
framework for analyzing modern society as a system of
communication (Luhmann, 2013). Rather than focusing on
individuals or actions, this theory conceives society as constituted by
communication. Within this framework, organizations are understood
not as aggregates of persons or goals, but as specific types of social
systems defined by their ability to produce decisions. From this
perspective, organizations are forms of social systems that emerge to
manage complexity and reduce uncertainty in modern, functionally
differentiated societies. Unlike interaction systems or broader societal
function systems—such as politics, economy, or education—
organizations are problem-oriented systems that establish structured
ways of coordinating communications through decisions. While
organizations are not defined by a specific binary code, as function
systems are, their operations depend on the continuous generation
and stabilization of decisions, which in turn create their internal
coherence against their environment (Luhmann, 2013). This approach
has been extensively used to analyze the structural and operational
logic of organizations, highlighting how decisions function as a
mechanism of systemic closure and continuity (Andersen, 2003).

This focus on decision-making underlines the fundamental
problem organizations face: the necessity of addressing and reducing
overwhelming complexity while maintaining its coherence in a
dynamic environment (Seidl and Becker, 2005). Decisions, as selective
mechanisms, serve to filter possibilities by determining what aspects
are included in communication and what is excluded. This ongoing
process of selectivity underscores the fragility of organizational
simplifying
simultaneously excludes alternatives, thereby generating risks that in

coherence, as every decision, by complexity,
turn demand further decisions in a self-producing cycle of further
decisions. In this sense, organizations are not stable entities, but
dynamic systems whose continuity depends on their capacity to
recursively produce decisions (Nassehi, 2005; Seidl and Mormann,
2014; Luhmann, 2020).

Expertise must be understood within this broader context as a
phenomenon that does not represent an inherent feature of
organizations or their initial development. In pre-modern societies,
coordination within pre-organizational forms—such as guilds,
religious orders, or early bureaucracies—relied heavily on tradition,
charisma, or personal authority, which tied decision-making and
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knowledge systems to individual actors and culturally embedded
norms (Weber, 1978). However, as societal complexity increased, these
mechanisms proved insufficient to address the demands of more
differentiated and dynamic environments. Expertise emerged as an
institutionalized resource in early modernity, serving as a response to
this growing challenge, decoupling decision-making from individual
authority and anchoring it in specialized systems of knowledge (Meyer
and Rowan, 1977). This shift not only allowed organizations to
manage complexity more effectively, in a way less context-dependent,
but also contributed to the de-humanization of organizational
dynamics, as the reliance on personal relationships and intuitive
authority was replaced by impersonal, procedural, and often
automated frameworks of knowledge production and decision-
making (Warner, 2007). Expertise thus became embedded within
roles, credentials, and institutional structures, transforming
organizations into systems increasingly oriented towards predictability,
while subordinating interpersonal or traditional forms of coordination
to the authority of specialized knowledge systems that claimed a better
understanding of their respective environments (Collins, 1979).

Functional differentiation—the process by which society becomes
segmented into autonomous subsystems, each with its own rationality,
language and rules, such as law, economy, education, and science
(Luhmann, 1982)—has been pivotal in shaping the relationship
between expertise and the emergence of modern organizations. As
each subsystem developed its own distinct operational logic,
organizations emerged as mediating structures tasked with
interpreting and implementing these logics in context-specific ways
(Labrana et al., 2025). Financial institutions, for example, became
critical to the economy by operationalizing financial transactions and
managing economic flows, while schools aligned themselves with the
education system by translating pedagogical theories into structured
learning practices, and courts embedded within the legal system
transformed legal norms into decisions on concrete cases. In each of
these instances, organizations required specialized expertise to bridge
the gap between the abstract, often self-referential operations of
societal subsystems and the concrete, practical demands of their
environments. Expertise thus became indispensable, enabling
individuals within organizations to fulfill their expected roles while
allowing organizations to adapt and coordinate in response to the
increasingly abstract and complex demands arising from the
expansion of functionally differentiated systems (Zald and Lounsbury,
2010; Labrana and Vanderstraeten, 2020).

Expertise thus became the primary mechanism through which
organizations structured their relationships with the broader societal
systems they were embedded in (Luhmann, 2013). By doing so,
expertise enables organizations to achieve operational stability by
systematically reducing complexity across the three key dimensions
of meaning: factual, temporal, and social. In the factual dimension,
expertise allows organizations to presuppose a stable and predictable
reality by providing specialized knowledge that delineates domains of
relevance, framing problems and solutions within bounded contexts.
This stabilization of communication reduces the need for continuous
renegotiation of facts, creating a foundation for shared understandings
among organizational members (Simon, 1991; Weick, 1995). For
instance, in engineering firms, expertise defines technical parameters,
enabling clear problem identification and reliable solutions
(Bucciarelli, 1994). Similarly, in medical organizations, expertise
grounds diagnoses and treatments in evidence-based practices,
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fostering a common understanding of health and disease that shapes
operational decisions (Berg, 1997). Lastly, in schools, expertise
establishes that
methodologies, fostering shared educational goals among educators

pedagogical frameworks stabilize teaching
and students (Shulman, 1987). Through these mechanisms, expertise
aligns organizational practices with the complex demands of the
societal systems they are embedded in, ensuring that responses are not
only legitimate but also help reduce environmental complexity in ways
that are both effective and socially convincing.

In the temporal dimension, expertise operates as a dynamic and
continuously evolving resource for organizational decisions,
distinguishing itself from forms of knowledge that often claim timeless
validity. Its relevance lies in its ability to adapt to changing
circumstances, functioning as a self-substitutive order that perpetually
renews itself through the ongoing refinement of the theories and
methodologies upon which it is ultimately based (Luhmann, 1990).
For instance, legal expertise evolves to integrate new regulations and
precedents, while technological expertise advances alongside
innovations in tools and systems to retain its social effectiveness
(Teubner, 1987). Central to this process is professional training within
educational institutions, which serves as the primary mechanism for
the continual updating and refinement of expertise. Schools and
universities, especially, play a crucial role by establishing standardized
frameworks and methodologies designed to equip individuals with
the knowledge needed to operate as experts in their respective fields,
ensuring that expertise remains a relevant, adaptive, and useful
resource in complex organizational environments (Brown, 2001).

In the social dimension, expertise legitimizes decision-making
processes within organizations by establishing hierarchies of
knowledge and authority, where the ability to decide is not solely
based on possessing specialized knowledge but also on being
recognized as having the authority to do so (Luhmann, 2000). This
recognition functions as a legitimizing mechanism that is not merely
an objective reflection of competence but also a socially constructed
attribution of authority (Stichweh, 1994; Eyal, 2019). In this sense,
legitimacy is not derived from expertise alone but from the
that
trustworthiness and decision rights to certain roles or individuals. In

institutional and communicative processes attribute
turn, this recognition creates distinctions between experts and
non-experts, facilitating the coordination of decisions and reducing
complexity within organizations. Based upon this, expertise fosters
trust and accountability by enabling the delegation of responsibilities
and the implementation of decisions within a framework of legitimacy,
reinforcing organizational coherence and ensuring the effective
allocation of tasks and resources toward shared objectives (Bunz,
2014). For example, in hospitals, the expertise of doctors and nurses—
validated through certification and training—ensures that medical
decisions are both credible and authoritative, maintaining trust among
organizational members and external stakeholders (Freidson, 1970).
Likewise, in educational institutions, the expertise of teachers and
administrators—validated through formal qualifications and
professional development—provides a foundation for decision-
making processes that guide curriculum design, student assessment,
and resource allocation (Hoyle and Wallace, 2005). By clearly defining
roles and responsibilities based on expertise, organizations reduce
uncertainty, minimize conflicts over who has authority to decide on
which topics, and establish a framework for achieving their goals,
reinforcing their capacity to respond to internal and external changes.
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Artificial intelligence as a (partial)
functional equivalent of expertise in
organizational decision-making

The increasing adoption of Al in organizational settings has
prompted debates about whether it can serve as a functional equivalent
to human expertise. As explored in the previous section, expertise has
historically emerged as a mechanism to reduce complexity in
organizations, addressing uncertainty through the factual, temporal,
and social dimensions. Al, with its capacity for data analysis, pattern
recognition, and automation, appears to replicate certain functions of
expertise. However, when examined in light of a sociologically-
grounded understanding of expertise as outlined earlier, Al reveals
limitations that challenge its ability to serve as an equally
comprehensive substitute.’

In the factual
generalization and specificity to address organizational challenges

dimension, human expertise combines
within bounded contexts. This capacity for contextual adaptation
allows experts to frame problems in ways that are both precise and
actionable, drawing on abstract principles and practical experience.
By contrast, Al systems focus on generalizable patterns derived from
vast datasets (LeCun et al., 2015). As already discussed above, in the
first eras of Al this training often made these systems overfitted to
specific problem-situation, completely losing any ability to translate
knowledge from one domain to the other (i.e., they only had a very
restricted domain expertise, with no general expertise). This was
called ‘brittleness. While contemporary approaches to Al, and
particularly deep learning, have overcome some of these limitations
thanks to the use of a much broader base of data and parameters, they
fundamentally still rely on the learning of specific ‘rules’ and patterns,
as opposed to what human experts do by assigning a ‘meaning’ to data
which can actively connect one domain of knowledge and learning
with others through higher-level cognitive architectures, that these
systems lack. The deep learning approach thus excels in identifying
trends or optimizing routine processes, but it often fails to account for
the specificities that arise in complex or novel situations. For example,
a financial algorithm may efficiently detect fraudulent transactions by
analyzing patterns across thousands of data points but may struggle
to account for contextual nuances, such as the socio-economic
conditions influencing certain behaviors (O'Neil, 2016). Similarly, in
the healthcare sector, Al tools may accurately flag anomalies in
diagnostic imaging; however, they often fail to integrate this

2 Of course, this 'equivalence’ between Al and human expertise is only partial,
and contingent to specific contexts (e.g., specific topics or functions, ‘tactical’
instead than strategic decisions, ‘hard’ instead than "soft” skills and so on). That
is in part what the discussion between ‘specific’ Al and ‘general’ Al (AGI)
(Emmert-Streib, 2024): the long-waited—or feared—promise of AGl is that it
can substitute human expertise across the whole spectrum, and flexibly through
different fields or decision-making situations. But all forms of Al, from
search-aid chat-bots to ‘expert systems’ to enhanced reality to autonomous
driving- are in some way a form of substituting 'some’ kind of expertise in
‘some’ decision-making situation, and one of the main objectives of Al
development has been indeed to expand the scope and reduce the ‘brittleness’
(that is, the lack of flexibility and generalizability) of Al in ever-more complex

and broader decision-making situations.
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information with patient histories, physician observations, or the
socio-cultural contexts that influence care—unless explicitly trained
to do so (Obermeyer and Emanuel, 2016). Even more relevant, in the
field of artistic creation, AI demonstrates the ability to generate texts
that give the impression of creativity. However, these outputs often
lack the deeper contextual awareness and intentionality that has
historically defined proper human artistic expression.

This emphasis on generalization limits AT’s ability to generate the
context-sensitive relevance required for effective organizational
decision-making. Expertise, in contrast, goes beyond merely providing
answers; it involves identifying the limitations of existing knowledge
and bridging these gaps through experiential insights. ATs reliance on
large-scale datasets creates a dependency fundamentally distinct from
the contingency-responsive and adaptive qualities inherent in human
expertise (Stinson and Vlaad, 2024). As discussed in Section III,
expertise reduces complexity in organizational operations by
presupposing a relatively stable world and integrating theoretical
knowledge with practical experience to frame and address relevant
issues. AI, however, lacks such foundational presuppositions, making
it highly susceptible to incomplete, biased, or poorly contextualized
data —a vulnerability that has garnered growing attention (Zou and
Schiebinger, 2018). As a result, the insights generated by Al risk being
not only irrelevant but also potentially counterproductive to
organizational decision-making anytime the decision involves this
kind of context-specificity, or higher degrees of general expertise as
compared to domain expertise, undermining its capacity to address
context-specific challenges and ensure the relevance and effectiveness
of its actions.

Furthermore, ATs reliance on external inputs highlights its
inability to autonomously delineate and prioritize relevance within
complex organizational environments. This dependency renders Al
incapable of independently addressing ambiguity or adapting to
contexts where information is incomplete, conflicting, or fluid, as it is
increasingly evident in organizational decision-making (Kahneman
and Klein, 2009). Unlike human expertise, which leverages
experiential insights and reflection to discern relevance and establish
priorities, Al systems are entirely constrained by the quality, scope,
and structure of the data they are provided. This reliance not only
limits their capacity to make judgments but also prevents them from
accounting for variables that lie outside predefined parameters,
reducing their effectiveness in new and unpredictable scenarios.
Similarly, it also makes them strongly subject to underlying biases in
the data, something very visible in the different forms of ‘automated
discrimination’ that Als inherit from their data (Heinrichs, 2022).

In the temporal dimension, Al clearly surpasses human expertise
any time a very quick decision needs to be made considering a large
amount of new information, that humans would not be able to
process. But in organizations, expertise is not only a mechanism to
make quick decisions; rather, and much more importantly, it serves
to reduce complexity by fostering trust in human judgment,
particularly in uncertain contexts. Unlike AI, which operates within
predefined parameters, human expertise is inherently dynamic and
adaptive, drawing on interpretive processes that integrate past
experiences with plausible anticipations of the future. This ability to
contextualize decisions temporally enables expertise to address
immediate challenges while considering their broader implications
for future scenarios. By aligning present actions with long-term
objectives and strategies, expertise equips organizations to confront
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uncertainty with confidence, ensuring that decisions are guided by
both historical insights and forward-looking perspectives. In contrast,
Al operates through a logic of sufficiency rather than interpretive
anticipation. While machine learning systems can adapt by
incorporating new data, this process is fundamentally reactive, relying
on existing patterns and inputs. As a result, Al lacks the critical
proactive capacity to assess emerging or unforeseen conditions
(Dreyfus and Dreyfus, 2005).

Equally important, trust in expertise is deeply rooted in its
capacity to justify decisions and respond effectively to unanticipated
developments. Experts do not merely predict outcomes; they provide
explanations that frame uncertainty in meaningful ways, fostering
confidence and enabling contingency planning. In contrast, Al
systems, while capable of producing statistically robust outputs, often
lack the interpretive depth necessary to contextualize their
recommendations. The opacity of many algorithms—the so-called
“black box” problem (Bathaee, 2018)—further erodes trust by
concealing the reasoning behind their conclusions. This lack of
transparency poses significant challenges for organizations,
particularly in high-stakes contexts where accountability, adaptability,
and a clear rationale for decisions are critical. Without the ability to
articulate why a specific course of action is recommended, Al systems
risk being perceived as unreliable, limiting their utility in contexts
requiring rather explicit interpretive insights (Ananny and Crawford,
2018). In this sense, Al systems are somewhat more similar to
‘intuitive’ expertise, or ‘gut feeling, which while broadly used in
decision-making (and arguably, one of the most significant
components of human expertise) also shares this lack of clear explain
ability. However, even intuitive expertise can ultimately be explained,
understood and even predicted (and abundantly subject to
measurement and testing, see Section 2) based on identifiable sets of
human characteristics, which makes it possible to anticipate that some
‘person’ will be likely more expert than another in certain tasks, as well
as to foster and nurture expertise, both in the education system and
within organizations. This is not the case with IA: while AI ‘learns, and
Als with more parameters or more data allegedly learn more and
faster, there are still not clearly defined attributes that can help an
observer know beforehand which AI will be more expert at what, and
even, whether all times the same AI will be called -each of this is, in
some way, a new individual ‘expert’ that learns from the specific
interaction but cannot be replicated in future interactions- it will
always show the same expertise. Steps are being done in this direction,
and prompt engineering’ may somewhat solve this, but still strongly
relying on human intervention.

Additionally, the institutional trust-building mechanisms
underpinning human expertise is fundamentally absent in AI systems.
Expertise is deeply embedded within professional networks,
credentialing processes, and institutional frameworks that collectively
establish its legitimacy and ensure its accountability (Brint, 1994).
These structures not only validate and update expert knowledge but
also create mechanisms for holding experts responsible for their
decisions, thereby fostering confidence in their guidance. Al, by
contrast, functions as a technical artifact, disconnected from these
institutional connections, which makes it significantly more
challenging to perceive its outputs as a reliable foundation for long-
term decision-making. While AI excels at optimizing specific tasks
within well-defined parameters under quick-answer problem
situations, its inability to participate in the broader dynamics of social
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trust highlights a limitation in its capacity to replace human expertise
in longer-term contexts that require a broader picture (Pasquale, 2015).

In the social dimension, expertise serves not only as a repository
of specialized knowledge but also as a legitimizing mechanism within
organizational hierarchies. It gains recognition and validation through
the distinction between experts and non-experts, creating a structured
framework for trust, authority, and accountability. This distinction is
essential for organizational operations, as it facilitates the delegation
of decision-making and the establishment of clear lines of
responsibility. Al, however, disrupts this social framework. As a
non-human system, it lacks the relational and institutional positioning
that underpins human expertise, making it incapable of occupying the
role of an “expert” in the traditional sense. While advanced Al systems
such as ChatGPT can simulate dialogue, offer justifications, and
respond to challenges to some extent, these interactions remain only
partially embedded in the social and institutional contexts necessary
for conferring legitimacy. As noted, legitimacy arises not merely from
functional outputs but from the social attribution of trust,
responsibility, and accountability—dimensions that Al is not capable
of fulfilling autonomously. It therefore continues to function as a tool
whose outputs require human interpretation and mediation
(Binns, 2018).

A key issue in this regard is the indeterminacy of AT’s “unmarked
side” Expertise relies on clearly defined boundaries between what is
known and what remains unknown, along with the ability to articulate
those boundaries transparently. Human experts do not simply provide
answers; they also inevitably communicate the limitations of their
knowledge, making the scope and constraints of their expertise
explicit. In contrast, Al operates without such transparency. The
already mentioned “black box” nature of many Al systems obscures
the assumptions underlying their outputs and makes it difficult to
identify the limits of their knowledge. This opacity disrupts the
traditional distinction between experts and laypersons, creating
uncertainty about AI's appropriate role within organizational
hierarchies and how its outputs should be evaluated (Ananny and
Crawford, 2018). That is: AI is both an extremely knowledgeable
specialist and a stupid advisor.

Moreover, the social dynamics of expertise involve more than the
validation of knowledge—they also encompass the coordination of
diverse perspectives within organizations. Human experts play a
critical role as mediators, integrating insights from various domains
to facilitate collaboration, alignment, and consensus-building. They
do so not only by ‘knowing’ (and being expert) at all the domains, but
even more importantly, engaging in team work, creative collaboration
and knowledge sharing with other areas. In contrast, Al systems lack
this capacity. While they can generate highly individualized
information, Al systems do not engage in the processes that harmonize
knowledge with organizational objectives or resolve conflicting
perspectives, limiting their effectiveness in multi-stakeholder
environments and resulting in less legitimate outcomes (Jarrahi, 2018).

Organizational decision-making in the
face of sustainability and climate
change: the promise of Al

Having understood to what extent and with which caveats can Al
complement or integrate with traditional human expertise in
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organizational decision-making, we now turn to the central question
of the manuscript: what challenges and opportunities does this imply for
sustainability and climate change? In particular, how—to which degree
and in which direction—the expansion and potential hybridization of
expertise may have an effect on the (organizational) decision-making
dilemmas related to the attempt to steer and accelerate sustainable
transitions in our societal, technological and ecological environments?
In previous works (Billi et al., 2020; Billi et al., 2024a,b), we have
performed a deep reflection on these dilemmas, using an analytical
framework very similar to the one we have discussed so far. In these
reflections, we have employed the term ‘governance’ to refer to the
whole array of decision-making processes related to sustainable
transitions, including both decisions that are taken in the domain of
traditional for-profit and non-for-profit organizations, in the public
arena (by State and public organizations, as well as political
institutions) and in the different emerging realms of network-like
quasi-organizations that often populate the field of sustainability. This
implies broadening the scope of analysis to a broader meaning of
organization and decision-making, which however can learn a lot
from all that has been studied in terms of expertise, and its relationship
with AJ, in the narrower setting of conventional organizations.

In these studies, we have argued that decision-making related to
sustainability transitions and climate change mitigation or adaptation,
and thus expertise related to said decisions, is fundamentally faced
with three dilemmas, each of which implies a specific ‘tension’ that
decisions and expertise need to navigate, related to the same three
dimensions discussed above: factually, in terms of the tension between
the universality and specificity of the problem and knowledge on
which decisions need to be made; temporally, the tension between
long-term and short-term horizons of decision, and related to this,
between the continuity of drive between decisions taken at different
times and the need to adjust to changing circumstances; and socially,
the tension between the coordination of decisions taken by different
actors, and thus, also the possibility of some actors of restricting or
steering decisions of others, and the need to maintain a degree of
agency and autonomy of each individual decision maker (and thus,
take advantage of their specific expertise).

In particular, our claim was that the quest for sustainability
transitions applies an increasing pressure on both sides of the
spectrum of each of these decision-making tensions, and thus the
problem of governance (but also of expertise) becomes how to balance
between them in these growingly complex conditions. This is, for
many, one of the core issues that requires facing in order to face
problems related to climate change -and sustainability more broadly:
linear, structured, problem-solving thinking is not enough to fathom
-let alone solve them. In fact, it can often lead to worsening them or
creating new ones (Gupta, 2016; Lazarus, 2008; Voss et al., 2006). And
it is also why, while the COVID-19 pandemics, despite its tragedy and
impact, could be mostly ‘solved’ in less than 2 years, while climate
change has still no clear ‘solution’ in sight despite knowledge of it
having been around for more than a century, and counting (Billi
et al., 2024b).

In the factual dimension, decisions regarding just transition
oriented to sustainability and climate change require specificity
because they relate to multiple and different domains, systems, scales,
each implying its own kind of expertise. For instance, a transition in
the ‘energy system’ requires to consider economical, technical,
ecological, socio-cultural, legal and political factors, as they accrue as
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much at the global level, as at the national and subnational ones
(Klein, 20205 Saruchera, 2025). No single set of decisions will be the
best one to push forward transitions across all these contexts, different
variables and knowledges need to be balanced, and this deeply
challenges the cognitive limitations of human experts, which tend to
have a limited grasp of the knowledge required in each of these
domains, and are likely expert at most in a subset of them.

However, at the same time, these decisions need also to be able to
transcend their contexts, because of the high interdependence of
actions taken in each domain and scale: impacts on one sector can
generate chain effects on others; measures that respond to current
challenges at some scale could generate counterproductive
consequences in other scales and actions that are appropriate for a
certain group or sector may be negative for others. Even improved as
it is, Al remains too brittle to be able to deeply tackle these
interdependencies, and it lacks access to a meaning-making
mechanism that can allow it to interpret and understand how these
different decisions may interact with each other in different contexts.
However, it can provide a vast access to data and knowledge which can
help human experts to make sense of this complexity. Here, a
hybridization of human (both intuitive and rational) general and
context-sensitive expertise and artificial domain-specific expertise
could be beneficial in that it may be able to expand the cognitive span
of decision-making systems beyond the traditional limitations and
thus capture as much domain knowledge as needed while also
retaining the ability to read between domains, much similar to the
hope that was once upon a time invested in the development of ‘expert
systems. However, for that to happen, the human expert should
remain in charge and at the drive, resisting the temptation of taking
for granted patterns and suggestions made by Al systems, and instead
guiding the search for new and more reflexive ways of understanding
the complexity and making connections. In this framework, Al should
primarily serve as a tool and an assistant to human expertise,
augmenting rather than replacing the interpretive strengths of human
decision-makers.

In the temporal dimension, decisions regarding just transitions
imply a high degree of anticipation, long-term perspective and
tolerance to uncertainty. Not only sustainability and climate change
imply slow-moving variables, so that their causes and effects require
to take into account decades- and often centuries-long timeframes.
But also, transitions required to tackle them may require decades to
happen, needs to nidify strategies into strategies and anticipate future
scenarios which are unclear in their probability and even in the
assumptions that are made to create them (sometimes referred to as
‘deep uncertainty’ Haas et al., 2023). Even more crucially, transitions
are ill-structured problem situations, or “wicked problems” as they
tend to often be called (Termeer et al., 2015) -or even “super-wicked,”
in the case of climate change (Gilligan and Vandenbergh, 2020). Al is
not well equipped to deal with these kinds of problems, and truth
be said, not all humans are. In fact, it is often implied that these
problems require reframing our way of thinking, deepening our
critical reflexivity, inter and transdisciplinary attitude and advancing
new form of collaboration and leadership (Earle and Leyva-de la Hiz,
2021). Expertise, particularly adaptive expertise, must then
be nurtured to face these problems, requiring not only human
decisions, but decisions that are trained and sensitivities to open up to
these new forms of thinking. But at the same time, just transitions also
require short-term decisions, and in fact, it requires to quicken and

Frontiers in Artificial Intelligence

10.3389/frai.2025.1571698

multiply decision-making power to be able to adjust almost in real
time to changing scenarios and conditions, in a way and pace which
humans cannot readily adopt. For instance, optimizing energy
efficiency, or water use, or organizing circular economy structures and
o0 on, requires very fast and broad-spanning decisions on multiple
contexts and places at once. This does not necessarily require long-
term thinking, but rather rapid data processing and memory, qualities
in which AT systems excel (Haider et al., 2024; Zejjari and Benhayoun,
2024). So in the temporal dimension, hybridization should take at the
same time the role of human expertise enhancement through Al,
providing scenarios, data exploration and management tools to foster
future-thinking, and replacing of humans by Al in routinary, quick-
thinking tasks but with the possibility of overriding these when
intuitive expertise tells otherwise.

Finally, in the social dimension, sustainability and climate change
problems face not only a multiplicity of decision-makers, as they often
require actions to be taken in a coherent and collaborative manners
between public institutions, private enterprises, community members
and so on, but also inherent and sometimes unsurpassable trade-offs,
‘hard choices, contrasting values and worldviews, and no-size-fits-
it-all solutions, that make all decision-making situation in this context
inherently controversial and open-ended (O'Brien et al., 2009
Sapiains et al., 2020). Thus, the problem is how to include multiple
perspectives, so that decisions not only make sense but also ensure
their legitimacy and ownership by these different groups, while at the
same time allowing that actors are able to coordinate and act in a
timely and relatively orderly manner, in the face of joint problems and
(limited) common resources.

In this context, Al is not up to the task, not alone at least.
Replacing human decisions for Al systems may seem an attractive way
out to some, removing the alleged ‘bias’ of human decisions to specific
factions or worldviews, but what it ultimately does, is promoting a
cold, context- and socially-insensitive form of technocracy. As
discussed above, while AI does exude some sense of authority or
legitimacy because of its perceived ‘objectivity, this does not apply in
overtly conflicted situations in which attention to subjectivity and
controversies is fundamental for decisions to be considered legitimate.
Moreover, as also discussed above, excessive trust on the objectivity of
Al may also be misguided, as AI systems ultimately take in the inputs
that they receive and derive patterns from them, without any ability to
identify potential biases or discriminations that these may hide (either
unintentionally or deliberately). On the other hand, AI systems can
have a role here in expanding the accessibility of knowledge and
expertise. As also discussed in the factual dimension, in complex
problem-situations, not everybody can have access to all the
knowledge needed to make a decision, and particularly, most people
will probably have no training on most of the technical aspects of a
decision, making human-only approach prone either to technocratic
exclusion, or to populist rhetoric, e.g., oversimplifying myths and
post-truths. In fact, even after decades of scientific and political work
over this, many people still do not get a deep understanding of
sustainability and climate change processes, and climate skepticism
remains rampant (Dunlap, 2013). Al can here help by translating and
making rapidly accessible deeper forms of knowledge to people that
go beyond their individual sphere of expertise, so they can engage in
more productive and informed dialogue and deliberation with their
peers. However, this would require incorporating more explicitly
training in use of Al -and also, in critical appraisal of AI ‘truths’ into
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both higher education and adult specialization curricula, which would
also help in shifting capacities required to support inclusive and just
transition processes.

Conclusion

This paper examined the opportunities and challenges of Al in
shaping a just transition to sustainability, particularly regarding its role
as a partial alternative to human expertise within organizations.
We have argued that expertise functions as a key mechanism for
reducing complexity in decision-making, defining problems and
solutions, adapting to change, and legitimizing decisions. Al, while
useful in processing data, identifying patterns, and facilitating
accessibility, cannot fully replace human expertise due to technical
and social plausibility limitations. Effective Al integration requires
developing new forms of collaboration between AI and human
decision-makers—ranging from assistance to hybridization and
supervised substitution—while simultaneously advancing human
expertise to address the growing complexities of the world and
support just transitions.

As discussed in the previous section, hybridization is required to
respond to the growing complexity, rapidity, uncertainty and
policontextuality of decision-making challenges, which becomes even
more relevant in the frame of super-wicked problems such as climate
change and other sustainability issues. Combining human and IA
expertise would bring in this case not only a way of fostering the
compatibility between human and Al expertise in organization, but also
ways to harness this in the context of the green transition and adaptation
strategies required by climate change and other sustainability issues.

However, as already noted, hybridization between human and
artificial intelligence can take multiple forms—ranging from context-
dependent procedures such as the interactive division of tasks, to
Al-enhanced access to information, delegation of routine
responsibilities, and more integrated workflows that enable the
co-construction of knowledge and joint task execution. These models
vary in their effectiveness and feasibility across different settings,
highlighting the need for further research into the specific forms of
hybridization most conducive to promoting just and sustainable
transitions. Crucially, all such approaches require a rethinking of how
current and future workforces are trained. This is particularly pressing
in the context of green transitions, where occupational reorientation
toward climate-compatible roles is rapidly becoming a central
challenge. While our analysis highlights the limitations of AI in
replicating the social and interpretive dimensions of human expertise,
we also acknowledge that in certain well-structured, high-volume
decision environments, Al systems may achieve a degree of autonomy
or functional legitimacy—especially when supported by robust
validation procedures, transparency protocols, and effective human
oversight. Future research should critically investigate these scenarios
to understand the institutional, technical, and social conditions under
which AT might reliably assume roles traditionally reserved for human
experts, without compromising trust, accountability, or ethical integrity.

Similarly, future research should explore how different
organizations incorporate Al to advance just transitions, particularly
in human-centric fields like education and healthcare, where ethical
judgment and empathy remain irreplaceable. Another critical issue
is trust—AI adoption depends not only on technical proficiency but
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also on its perceived legitimacy. Skepticism persists, warranting
further study on whether it stems from AT’s limitations, its perceived
inferiority to human expertise, or broader societal concerns.
Additionally, the power dynamics of AI implementation must
be further examined, as Al can either reinforce hierarchical structures
or democratize access to expertise, impacting equity and justice in
sustainability transitions.

The discourse on Al is often steeped in grand expectations or
dramatic concerns, where lofty aspirations and dystopian fears
outpace reality. Organizations stand at the crossroads of these
ambitions, translating ideals into practice of day-to-day work and
workforce management. In this context, however, insufficient attention
has been put so far on the role, opportunities and challenges that the
incorporation of Al-assisted decision and the hybridization of human
and Al expertise can have on fostering more grounded and informed
decisions in the context of complex, (super-)wicked problems such as
climate change and sustainability. This study moves beyond promises,
anchoring the conversation in functionality and plausibility—what AI
can truly offer, rather than what it merely envisions. In this pursuit,
innovation alone is not enough; a deeper understanding of the social,
cultural, and political landscapes in which AI unfolds is essential.
Only by acknowledging these complexities can AIs role in
sustainability and climate change transcend rhetoric and become a
force for meaningful transformation.
is essential to foster

To advance in this direction, it

interdisciplinary ~ collaboration among computer scientists,
organizational theorists, and sustainability scholars to develop
context-sensitive frameworks for human-AI interaction. Practical
experimentation through pilot initiatives—particularly in sectors
such as urban planning, renewable energy, and climate governance—
holds particular promise and can yield valuable insights into how
hybrid systems function in real-world decision-making environments.
In parallel, policy-oriented research should examine the regulatory,
institutional, and normative infrastructures needed to ensure that Al
implementation is consistent with democratic values, social inclusion,
and environmental priorities. Addressing these challenges requires
more than technical innovation; it demands a fundamental
transformation in professional cultures, organizational learning,
higher education, and accountability frameworks. Only through such
integrated and reflexive efforts can Al serve as a meaningful

contributor to just, sustainable and climate-neutral transitions.
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